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TSFM: Time Series Foundational Models

TSFM: Foundation models pre-trained on public timeseries data

Generalizability in forecasting across multiple domains.

Rely on the strengths of architecture to learn generalized representations of time-series data.

TSFMs can leverage transfer learning capabilities to forecast in diverse locations by fine-
tuning on data from just one location, thus enabling scalable and accurate CO, forecasting.
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Key contribution of the paper
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Experimental Setup

Two evaluation pipelines for TSFMs:
e Zero-shot &
* Fine-tuning

Zero-Shot(ZS): TSFMs are evaluated on NOAA sensor data to assess models' generalization
capabilities to a new domain

Fine-Tuning (FT): TSFMs are fine-tuned using train split of NOAA sensor data; performance is
evaluated on test split to quantify improvements through fine-tuning on in-domain data.

Transfer Learning: TSFMs fine-tuned on train split of NOAA sensor data is evaluated on OCO-2 &
OCO-3 derived X-CO2 data for 100 locations in USA to assess transfer learning
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Results (1/2): CO, forecasting on NOAA

sensord

ata

e Zero-Shot TSFMs are worse than traditional baselines
TSFMs are better than traditional baselines

* Fine-Tuned
e TTM is the

pest performing model among TSFMs
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Results(2/2): Transfer learning for XCO,, for OCO-
2/3 derived data for 100 random locations in USA

* Transfer learning is slightly worse than finetuned TSFMs
* TTM performs best under transfer learning setting
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