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Abstract

Recent advancements in foundation models for time series forecasting have out-
performed traditional statistical and ML methods. In this study, we approach the
problem of CO2 concentration forecasting using time series foundation models
(TSFMs). We extensively evaluate the performance of TSFMs under zero-shot and
fine-tuned settings against popular traditional forecasting baselines and discuss the
spatial transfer learning capability of TSFMs across diverse geographic locations.

1 Introduction

Accurate forecasting of atmospheric CO2 is vital for informing climate policy, guiding emissions
reduction strategies, and anticipating societal responses to future climate scenarios. Multiple mea-
surements using ground sensors such as NOAA NOAA (2025), TCCON, etc. and satellite based
observations such as GOSAT, GOSAT-2, OCO-2, OCO-3, Tansat etc. provide rich CO2 concentration
time series (TS) spanning diverse regions. Studies such as M. et al. (2024); Zhong et al. (2024) have
used traditional autoregressive methods such as ARIMA and seasonal-ARIMA Kotu & Deshpande
(2019) for forecasting CO2 emissions. CO2 forecasting at city and country scales using machine
learning techniques are detailed in Li & Sun (2021); Li & Zhang (2023). Comparative analysis of
CO2 emission forecasting using various models concludes that ML and DL models outperform statis-
tical models Ajala et al. (2025). However, these are bespoke models trained on CO2 and correlated
exogenous data for CO2 forecasting.

In contrast, time series foundation models (TSFMs) pre-trained on public TS data have demonstrated
generalizability in forecasting across multiple domains Ansari et al. (2024); Woo et al. (2024); Darlow
et al. (2024); Goswami et al. (2024); Gao et al. (2024). They rely on the strengths of architecture to
learn generalized representations of time-series data Ekambaram et al. (2024). While PRESTO Tseng
et al. (2023) is a pretrained model for remote sensing TS, it is designed for representation learning
rather than forecasting. We are unaware of prior work applying TSFMs to air quality or CO2

forecasting. Building on this gap, TSFMs can leverage transfer learning capabilities to forecast in
diverse locations by fine-tuning on data from just one location, thus enabling scalable and accurate
CO2 forecasting.

Key contributions of this paper are:

• Evaluating TSFMs to forecast CO2 data from NOAA sensor in zero-shot & fine-tuned settings.
• Comparing TSFMs against traditional forecasting models, namely - Prophet, ThetaForecaster,

and the Seasonal Naive model to assess their performance on CO2 concentration forecasting.
• Evaluating the spatial transfer learning capability of TSFMs by using fine-tuned models (trained

on NOAA sensor data) to forecast XCO2 concentrations from satellite-based timeseries (OCO-2
and OCO-3 NASA (2025)) across various geographic regions.
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2 Methodology

2.1 Data

Ground-Based Observations: The CO2 concentration data (unit: parts per million (ppm)) used
is measured at the NOAA/GML atmospheric baseline observatories located at Barrow, Alaska,
US Thoning et al. (2024). At the time of writing this paper, the data was available from January-1974
to April-2024. In this paper, we used daily averaged CO2 concentration. This dataset has around 10%
missing values which were filled using interpolation to ensure data continuity for modeling as shown
in Figure 1a.

(a) Sensor data at Barrow, Alaska (b) 100 random points in USA.

(c) TSFMs use context x1, . . . xN , to
forecast y1, . . . yK as ŷ1, . . . , ŷK

Figure 1: Sensor data at Barrow observatory; Locations points chosen in USA; Working of TSFMs

Satellite-Based Data: We utilized daily XCO2 data from Jan-2019 to Dec-2023, derived from a
model based on OCO-2 & OCO-3 observations Das et al. (2023), covering continental USA. This
model uses satellite observations with meteorological covariates to produce daily gridded XCO2

estimates at 10×10 km resolution Das et al. (2023). Since the available data was considerably less
than the NOAA observations, we used this to assess the transfer learning capabilities of TSFMs. We
randomly used 100 locations from USA to evaluate the fine-tuned models (Figure 1b).

Data Preparation: To prepare data for modeling, CO2 concentration data is divided into chunks of
context and forecast windows as illustrated in Figure 1c. The context is the initial sequence of data
given to a TSFM to generate forecasts. Specifically, context length of 1024 daily observations and a
forecast horizon of 365 days is used. This setup enables the model to generate forecasts for one full
year and provides sufficient number of data points to generate statistically significant results.

Training Setup: The chunks of data are split into training, validation, and test sets. A common
training set of daily observations from 1974 to 2013 is used in the fine-tuning setting to train the
TSFMs while the next five years’ data is used to evaluate the performance during training. The test
set, from 2019 to 2023, is used for forecasting and remains unseen by the models during training. In
the zero-shot setting, a pretrained model directly forecasts on the test set without any fine-tuning. All
reported error metrics and visualizations in this study are based on the test set performance.

2.2 Models

In this study, we primarily focus on the pre-trained TSFM - Tiny Time Mixer (TTM) Ekambaram
et al. (2024) for CO2 concentration forecasting. TTM is a compact model with only 1M parameters
based on the light-weight TSMixer Chen et al. (2023) architecture. It has been pre-trained exclusively
on public TS datasets and shows excellent transfer learning capabilities.

The forecasting performance of TTM is evaluated against other state-of-the-art TSFMs -
Chronos Ansari et al. (2024) and TimesFM Das et al. (2024). Additionally, we use the Seasonal
Naive Forecaster, ThetaForecaster Assimakopoulos & Nikolopoulos (2000), and Prophet Taylor &
Letham (2018) as baselines for forecasting.

2.3 Experiments

Our experimental setup is designed to evaluate the performance of both traditional forecasting models
and TSFMs under various settings. We also explore how well the TSFMs generalize across spatial
domains and assess the benefits of transfer learning.

Traditional Models: We evaluated widely-used traditional TS forecasting models — ThetaForecaster,
Seasonal Naive, and Prophet — on the NOAA sensor data. These models were trained and tested
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Table 1: Experimental setup for atmospheric CO2 forecasting
Dataset Model Parameters Transfer Learning

CO2 data from
NOAA ground
sensor,
Barrows,
Alaska, USA
for 1974 to
2023

TTM TSFMs are evaluated in two
settings for Alaska location:
1. Zero-Shot (ZS)
2. Fine-Tuning (FT)

Context: 1024,
Forecast: 365

Fine-tuned model on Alaska
data is evaluated on CO2

derived from satellite for 2019-
2023 for 100 locations in USA

Chronos
TimesFM
Prophet forecaster Default params Transfer learning is not

applicable for traditional
machine learning models

Theta forecaster sp = 365
Seasonal naive forecaster

Figure 2: Pipelines for zero-shot forecasting, model fine-tuning and transfer learning

solely on this dataset to establish baseline performance in the same-region and same-distribution
setting. We used sktime Löning et al. (2019), a Python-based unified framework for machine learning
with TS, to implement the baselines and TTM. While Chronos and TimesFM were implemented
using their respective github repositories as detailed in Table A1 (Appendix).

TSFM Pipelines: We adopt two evaluation pipelines for TSFMs: zero-shot & fine-tuning (Figure 2).

• Zero-Shot (ZS) Evaluation: In this setting, we directly evaluate pre-trained (raw) TSFMs without
any task-specific training. This evaluation is performed on the NOAA sensor data to assess the
models’ generalization capabilities to a new domain, that is, CO2 forecasting.

• Fine-Tuning (FT) and Transfer Learning: In this pipeline, TSFMs are fine-tuned using the
train split of NOAA sensor data. We then evaluate performance on:

1. Test split of NOAA data to quantify improvements through fine-tuning on in-domain data.
2. OCO-2/OCO-3 derived XCO2 data Das et al. (2023), to evaluate transfer learning effective-

ness – the ability of models fine-tuned on one region to generalize across diverse locations.

For each of the TSFMs we choose 1024 as the context length and 365 as the forecast horizon as
mentioned in Sec. 2.1. Summary of the experimental setup is provided in Table 1.

2.4 Evaluation Metrics

To evaluate model performance, we report widely used error metrics for TS forecasting (1) Root
Mean Squared Error (RMSE), (2) Mean Absolute Error (MAE) and (3) Mean Absolute Scaled Error
(MASE) Hyndman & Koehler (2006). Equations A1 define these metrics, using the same notations
as illustrated earlier in Fig. 1c. For MASE, s is the seasonality of the data. This is set to be the same
as the sp=365 parameter shown in Table 1, since the data follows a yearly seasonal cycle.

3 Results

Tables 2 and Figure 3 present the results obtained using the experimental setup described in Sec. 2.3.
We now discuss the results in more details.

3.1 Traditional Machine Learning Models vs. Time Series Foundation Models

We compare the performance of traditional time series models (Seasonal Naive, ThetaForecaster, and
Prophet) with TSFMs, namely, TTM, Chronos, and TimesFM under both zero-shot and fine-tuned
configurations in Table 2 (Left). Among the traditional models, Prophet achieves the lowest MASE
error of 46%. This may be attributed to its capacity to model both linear trends and strong yearly
seasonality, which are characteristic of the NOAA CO2 dataset. In comparison, the ThetaForecaster,
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(a) CO2 for NOAA sensor data, Alaska (b) Transfer learning: XCO2 for OCO-2/3 derived data

Figure 3: Comparison of forecast of CO2 concentration [ppm] from different experiments for 2023.

Table 2: Left: Traditional ML and TSFMs (zero-shot & fine-tune) for NOAA data, Right: Inference
of fine-tuned TSFM model on XCO2 from OCO2/3 data. (best score, second-best scores)

Baselines Chronos TimesFM TTM Transfer Learning
Theta Naive Prophet ZS FT ZS FT ZS FT Chronos TimesFM TTM

RMSE 1.85 2.84 1.72 5.16 2.04 5.65 1.55 4.36 1.37 3.63 2.49 1.46
MAE 1.33 2.40 1.31 4.59 1.54 4.91 1.09 3.81 0.95 2.93 2.13 1.19

MASE 0.47 0.84 0.46 1.61 0.54 1.72 0.38 1.34 0.34 1.20 0.87 0.49

while robust and computationally efficient, provides limited adaptability to complex seasonal patterns.
The Seasonal Naive model, which simply repeats values from the previous year, serves as a baseline
and performs worst among the traditional approaches. When evaluating the TSFMs, TTM consistently
outperforms other TSFMs in both fine-tuned and zero-shot settings. Fine-tuned TTM achieves the
overall lowest MASE of 34% among all models, including traditional models. In the zero-shot setting,
TTM’s performance drops but still outperforms other TSFMs in zero-shot setting.

3.2 Zero-shot vs. Fine-tuned TSFM Performance

We assess the forecasting capabilities of TSFMs in both zero-shot and fine-tuned configurations on the
NOAA sensor data, with results shown in Figure 3a and Table 2 (Left). Importantly, this dataset was
not part of the pretraining corpus for any of the evaluated TSFMs, allowing us to assess their ability
to generalize to new domains. Across the TSFMs, fine-tuning significantly improves forecasting over
zero-shot with TTM achieving least MASE of 34%. The performance gap between zero-shot and
fine-tuned models reflects the role of domain adaptation in improving forecasting accuracy.

3.3 Generalization Across 100 Random Locations Through Transfer Learning

TTM, fine-tuned on the NOAA sensor data, demonstrates strong generalization ability over the
satellite-derived data. It consistently outperforms other foundation models across all metrics for
99 out of 100 randomly selected locations from continental USA, suggesting robustness to domain
shifts and the effectiveness of its learned temporal representations. As shown in Figure 3b and
Table 2 (Right), for one of the locations, it achieves 1.46 ppm as RMSE, 1.19 ppm as MAE, and a
MASE of 49%. Transfer learning results for all 100 location is presented in Table A2 (Appendix).

4 Conclusion

In this study, we have evaluated the zero-shot and fine-tuned performance of several pre-trained time
series foundation models: TTM, Chronos, and TimesFM against traditional baselines for the task
of CO2 concentration forecasting using data from ground sensors as well as satellite-based models.
Overall, TTM achieves the best performance across all metrics, followed by TimesFM. We also
demonstrate TTM’s ability to learn effective temporal representations making it robust to domain
shifts across different geographies. We illustrate the strong potential of TSFMs in the fields of climate
monitoring and remote sensing. As future work, we plan to include relevant exogenous variables to
augment the fine-tuning performance, thereby, enabling comprehensive learning.
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Appendix

Table A1: Details of TSFMs evaluated.

Model Model Source Implementation
Source

Params (M) Input Length

TimesFM HuggingFace Github 500 1024
TTM HuggingFace sktime 1 1024
Chronos HuggingFace Github 46 1024

RMSE =

√√√√ K∑
k=1

(
ŷk − yk

)2
K

MAE =

K∑
k=1

∣∣ŷk − yk
∣∣

K
MASE =

K∑
k=1

|yk − ŷk|
K

N∑
n=s+1

|xn − xn−s|
N − s

(A1)
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Table A2: Transfer learning results for 100 locations selected in Figure 1b (bold face: best results)
RMSE MAE MASE

location ID TTM TimesFM Chronos TTM TimesFM Chronos TTM TimesFM Chronos
mean ± std 2.15±0.27 3.02±0.34 4.42±1.35 1.92±0.31 2.72±0.39 3.30±0.61 0.75±0.12 1.07±0.15 1.30±0.24

1 2.28 3.42 4.41 2.10 3.21 3.12 0.83 1.27 1.24
2 1.93 2.57 4.51 1.60 2.19 3.31 0.63 0.86 1.30
3 1.83 2.57 3.72 1.55 2.19 2.50 0.60 0.84 0.96
4 2.36 3.43 4.71 2.22 3.28 3.47 0.89 1.31 1.38
5 2.33 3.42 4.52 2.18 3.16 3.43 0.85 1.23 1.33
6 2.33 3.29 4.13 2.16 3.06 3.22 0.84 1.19 1.25
7 2.18 3.10 4.84 1.89 2.67 3.89 0.71 1.01 1.47
8 2.42 3.47 3.65 2.25 3.21 2.88 0.85 1.22 1.10
9 1.61 2.65 4.57 1.32 2.25 3.32 0.53 0.90 1.32
10 2.27 3.19 15.65 2.04 2.94 3.69 0.81 1.17 1.46
11 1.99 2.57 3.94 1.68 2.19 2.75 0.65 0.85 1.07
12 2.02 2.78 4.05 1.71 2.36 3.10 0.65 0.90 1.18
13 1.93 2.69 4.68 1.63 2.30 3.43 0.62 0.87 1.30
14 2.66 3.37 4.32 2.49 3.18 3.18 1.03 1.31 1.31
15 2.04 2.81 4.10 1.75 2.40 3.22 0.67 0.92 1.23
16 2.19 3.05 5.01 1.96 2.72 3.70 0.78 1.08 1.47
17 2.35 3.26 4.83 2.19 3.01 3.44 0.85 1.16 1.33
18 1.94 2.67 5.82 1.66 2.36 4.58 0.67 0.95 1.85
19 2.33 3.06 5.06 2.07 2.74 3.59 0.81 1.08 1.41
20 1.70 2.25 3.78 1.38 1.94 2.87 0.56 0.78 1.16
21 2.29 3.34 4.47 2.15 3.12 3.28 0.82 1.19 1.25

22 (presented in table 2) 1.46 2.49 3.63 1.19 2.13 2.93 0.49 0.87 1.20
23 1.81 2.59 3.73 1.49 2.29 2.94 0.61 0.94 1.21
24 2.39 3.15 5.90 2.18 2.86 5.07 0.85 1.11 1.97
25 2.50 3.44 2.45 2.28 3.18 2.01 0.90 1.26 0.80
26 1.81 2.40 4.89 1.53 2.07 3.75 0.62 0.84 1.51
27 1.97 2.76 4.77 1.67 2.35 3.63 0.64 0.90 1.40
28 1.85 2.56 4.05 1.58 2.23 2.95 0.63 0.89 1.18
29 2.15 3.28 4.51 2.01 3.08 3.43 0.80 1.23 1.37
30 2.48 3.17 5.31 2.35 2.94 4.24 0.90 1.12 1.61
31 2.54 3.71 4.37 2.40 3.48 3.41 0.92 1.34 1.31
32 2.09 2.92 4.72 1.81 2.48 3.43 0.69 0.95 1.31
33 1.73 2.36 4.52 1.43 2.03 3.28 0.58 0.83 1.33
34 1.72 2.40 4.12 1.42 2.04 3.06 0.58 0.83 1.25
35 2.36 3.31 4.08 2.19 3.09 3.32 0.86 1.21 1.30
36 2.59 3.37 5.00 2.43 3.17 3.73 0.99 1.29 1.52
37 2.25 3.19 3.57 2.04 2.96 2.81 0.81 1.17 1.11
38 2.25 3.08 4.33 1.99 2.80 3.24 0.79 1.11 1.28
39 2.23 3.14 5.88 1.93 2.77 4.77 0.73 1.04 1.80
40 1.83 2.41 4.49 1.51 2.04 3.75 0.61 0.82 1.50
41 2.29 3.23 3.80 2.01 2.94 2.95 0.81 1.18 1.19
42 1.61 2.49 4.16 1.32 2.09 3.19 0.53 0.84 1.28
43 2.27 3.10 4.84 2.10 2.84 3.65 0.84 1.14 1.46
44 1.99 2.83 4.11 1.65 2.49 3.28 0.67 1.01 1.33
45 2.20 3.19 3.48 2.06 3.00 2.76 0.84 1.22 1.12
46 1.88 2.56 4.99 1.59 2.21 3.77 0.62 0.86 1.47
47 2.32 2.90 3.56 2.04 2.64 2.83 0.81 1.04 1.12
48 2.44 3.33 3.56 2.30 3.14 2.71 0.89 1.22 1.05
49 2.54 3.35 3.33 2.39 3.17 2.64 0.97 1.28 1.07
50 2.20 3.06 4.75 1.95 2.66 3.69 0.78 1.06 1.47
51 1.99 2.69 3.48 1.69 2.30 2.74 0.66 0.89 1.06
52 2.40 3.58 4.94 2.24 3.42 3.72 0.91 1.39 1.51
53 2.48 3.25 4.50 2.33 3.05 3.40 0.94 1.22 1.37
54 2.22 3.20 4.42 1.94 2.84 3.23 0.73 1.07 1.22
55 2.09 3.11 4.80 1.83 2.84 3.65 0.72 1.12 1.43
56 2.16 3.14 3.95 1.89 2.76 3.03 0.71 1.04 1.14
57 2.29 3.25 4.35 2.03 2.89 3.32 0.78 1.10 1.27
58 2.15 3.11 3.70 1.96 2.80 3.11 0.78 1.12 1.24
59 2.08 2.93 3.49 1.79 2.55 2.81 0.69 0.97 1.08
60 2.29 3.18 4.48 2.06 2.94 3.47 0.79 1.12 1.33
61 2.33 3.39 4.63 2.20 3.18 3.41 0.83 1.20 1.28
62 2.41 3.12 4.35 2.18 2.87 3.28 0.85 1.12 1.27
63 2.35 3.07 4.40 2.12 2.78 3.20 0.83 1.09 1.25
64 2.01 3.08 6.40 1.73 2.69 5.62 0.67 1.04 2.17
65 1.60 2.43 5.16 1.35 2.06 3.80 0.53 0.81 1.49
66 1.90 2.73 4.10 1.61 2.36 2.99 0.61 0.90 1.14
67 2.31 3.27 4.54 2.13 3.04 3.45 0.84 1.20 1.36
68 2.15 3.00 3.65 1.88 2.66 2.86 0.72 1.02 1.09
69 2.36 3.29 5.03 2.19 3.09 3.74 0.88 1.24 1.50
70 2.40 3.37 5.04 2.23 3.16 4.02 0.88 1.25 1.58
71 2.30 3.25 4.14 2.12 3.05 2.97 0.83 1.19 1.17
72 1.77 2.48 5.13 1.44 2.15 4.12 0.59 0.88 1.68
73 2.48 3.08 3.82 2.26 2.83 3.26 0.86 1.08 1.24
74 2.31 3.33 3.47 2.13 3.13 3.07 0.86 1.26 1.23
75 1.90 2.85 3.90 1.60 2.39 3.01 0.61 0.91 1.15
76 1.84 2.52 3.84 1.55 2.15 2.66 0.60 0.83 1.02
77 1.58 2.32 3.56 1.30 2.03 2.73 0.53 0.82 1.11
78 2.22 3.21 3.29 1.96 2.92 2.43 0.78 1.16 0.97
79 2.32 3.23 4.58 2.08 2.92 3.51 0.79 1.11 1.34
80 2.14 2.86 2.96 1.90 2.61 2.35 0.72 0.99 0.89
81 2.06 2.97 4.54 1.78 2.55 3.45 0.71 1.02 1.39
82 2.31 3.05 3.72 2.04 2.73 2.77 0.78 1.04 1.05
83 2.12 2.98 4.37 1.80 2.55 3.29 0.68 0.96 1.24
84 2.45 3.16 3.34 2.24 2.87 2.69 0.88 1.13 1.06
85 2.17 3.11 3.94 2.02 2.91 2.90 0.80 1.14 1.14
86 2.16 3.22 3.28 2.03 3.04 2.47 0.80 1.19 0.97
87 2.28 3.32 3.94 2.12 3.13 3.51 0.82 1.20 1.35
88 2.05 3.16 5.45 1.82 2.92 4.54 0.72 1.15 1.78
89 2.17 2.98 4.53 1.90 2.61 3.31 0.73 1.00 1.27
90 2.29 3.27 4.82 2.12 3.00 3.45 0.83 1.18 1.36
91 2.32 3.31 5.02 2.11 3.07 3.53 0.79 1.15 1.32
92 2.01 2.54 6.58 1.69 2.20 5.52 0.65 0.85 2.13
93 1.47 2.41 4.18 1.22 2.09 3.11 0.50 0.86 1.28
94 2.30 3.34 5.14 2.12 3.17 3.55 0.86 1.30 1.45
95 2.43 3.34 4.28 2.18 3.07 3.24 0.85 1.20 1.26
96 2.33 3.19 3.45 2.10 2.86 2.76 0.81 1.11 1.07
97 2.46 3.20 3.00 2.20 2.91 2.08 0.84 1.12 0.80
98 2.41 3.45 3.58 2.30 3.26 2.77 0.90 1.27 1.08
99 2.50 3.34 3.30 2.30 3.07 2.55 0.90 1.20 1.00

100 1.55 2.69 3.50 1.27 2.24 2.72 0.51 0.91 1.11
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