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Data Processing & Knowledge Integration. The correlation step uses a heatmap
and the Anderson-Darling K-sample test (threshold: 0.1) to identify variables influ-
encing carbon emissions. Variables with matching training and testing distributions
are retained for causation analysis.

Data Collection )+

= Rural Clean Fuel Access (EG.CFT.ACCS.RU.ZS): Greater access in rural areas
significantly lowers emissions, underscoring its role in climate mitigation.

= Urban Clean Fuel Access (EG.CFT.ACCS.UR.ZS): Essential for emission
reductions in high-density regions; a critical focus for urban policy.

= Achieving SDG 7 (Affordable and Clean Energy) requires understanding not
only technology gaps but also socio-economic drivers of energy access and
emissions.

= A key challenge in the social sciences is to design systems that support
adaptive intelligence by integrating diverse knowledge, tools, and automated
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[#5.1] Optimize tasks handling;
improve model
performance; increase
iteration efficiency;
enhance robustness to
input variations;
strengthen feedback loop
effectiveness.

= Goal: Advancing Evidence-Based Al Policy for Climate Change Al Social-Scientist (GPT): Policy Effectiveness: Greater variability weakens uniform outcomes.
Emission Impact: Urban-focused policies may vield quick results, but lasting success requires rural
inclusion. Urbanization Factor: Shifts where and how policies work; less urbanized regions need
taillored approaches. Policy Design: Reducing variability can support equitable and impactful strate-

gles.
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= Solution: ClimateAgents is a reflexive multimodal Al framework using LLMs
and domain agents for causal reasoning on clean energy transitions
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Diamond: Decision point requiring a choice between
alternatives.

Arrows: Flow of the process from one step to another.
* SVR ridge regression, decision tree, or random
forest model.
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tasks; explainability and
transparency.

ClimateAgents

. . . . Summary and Future Perspectives
= Credible and actionable: Leveraging 20 years of socio-economic and

emissions data covering 265 economies, countries and regions across 98
indicators, the framework applies a machine learning-based causal inference
approach to identify key determinants of carbon emissions. 1.

Reasoning Layer: Causal Effects Data Processing

Dataset: Selected variables { X1, ..., X5} = {V*, Y?"1 modeled as:
Xi = filpai( X))+ e, plx)=]]p@ | paix))

The study examines per capita CO, emissions using data from 265 economies,
countries and regions across 2000-2020. Variables cover emissions, energy use,
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