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Abstract

Achieving Sustainable Development Goal 7 (Affordable and Clean Energy) re-
quires not only technological innovation but also a deeper understanding of the
socio-economic factors that influence energy access and carbon emissions. Despite
growing attention to these drivers, key questions remain, particularly regarding how
to quantify socio-economic impacts, how these impacts interact across domains
such as policy, technology, and infrastructure, and how feedback processes shape
energy systems. To address these gaps, this study introduces ClimateAgents, an
Al-based framework that combines large language models with domain-specialized
agents to support hypothesis generation and scenario exploration. Leveraging 20
years of socio-economic and emissions data from 265 economies, countries and
regions, and 98 indicators drawn from the World Bank database, the framework
applies a machine learning based causal inference approach to identify key determi-
nants of carbon emissions in an evidence-based, data-driven manner. The analysis
highlights three primary drivers: (1) access to clean cooking fuels in rural areas, (2)
access to clean cooking fuels in urban areas, and (3) the percentage of population
living in urban areas. These findings underscore the critical role of clean cooking
technologies and urbanization patterns in shaping emission outcomes. In line
with growing calls for evidence-based Al policy, ClimateAgents offers a modular
and reflexive learning system that supports the generation of credible and action-
able insights for policy. By integrating heterogeneous data modalities, including
structured indicators, policy documents, and semantic reasoning, the framework
contributes to adaptive policymaking infrastructures that can evolve with complex
socio-technical challenges. This approach aims to support a shift from siloed mod-
eling to reflexive, modular systems designed for dynamic, context-aware climate
action.

Strengthening science-informed, evidence-based approaches to Al policy is increasingly essen-
tial[1].In domains such as clean energy and climate change, the question is how to integrate the
strengths of narrow Al components into a unified, context-aware agent, one able to process multimodal
data, reason causally, interact socially, and adapt continuously to evolving policy challenges. Recent
advances in artificial intelligence (Al), particularly large language models (LLMs), present new op-
portunities for sustainability research. LLMs are being applied in environmental science, economics,
and climate modeling [2, 3} 4, 15, |6} [7, 8], with transformer-based architectures enabling reasoning,
inference, and policy analysis [9,[10]]. They also support hypothesis generation, in-context retrieval,
and multimodal data synthesis [11} [12]. However, sustainability applications remain limited, often
constrained to text summarization or keyword-based mapping [[13} 14, 15,16} [17]]. Current LLMs
lack integration with structured data, causal inference, and adaptation to new socio-environmental
indicators [18]]. A key barrier is the absence of causal reasoning datasets: while general-purpose
corpora from Google [19], Bing [20]], and user interactions (e.g., ShareGPT, WildChat) [21]] exist, few
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support causal inquiry in LLM prompts [22}23]]. Critically, no dataset addresses socio-climate-related
causal questions, leaving a major gap for advanced applications [24].

To ensure reliable and standardized evidence-based analysis, this research adopts the World Bank
Development Indicatorsa widely recognized, high-quality, and publicly available data framework.
This data-driven foundation enhances the credibility and precision of the studys outputs. By applying
causal inference techniques with machine learning algorithms, the analysis moves beyond simple
correlation to uncover deeper, more robust relationships. This enables more grounded, interpretable
reasoning for policy-making. Furthermore, the integration of large language models (LLMs) supports
evidence-based analysis by generating outputs that aim to be credible and actionable, as their
interpretability can facilitate context-aware and informed decision-making [25} 26, 27].

The orchestration of these three modules reflects a system-level design philosophy rooted in mod-
ularity, specialization, and agent-based coordination. To address these challenges and extend the
utility of large language models (LLMs), this work proposes a multi-agent architecture grounded in
Minskys philosophy of modular, emergent intelligence. Rather than treating LLMs as monolithic
tools, the proposed system distributes reasoning and task execution across a set of interacting agents,
each specialized for distinct functions. The resulting frameworkClimateAgentsis a reflexive, causal
modeling system powered by GPT family models [28] and accessed via the OpenAl Application
Programming Interface [29]. It moves beyond static prompt-response paradigms, enabling adaptive
reasoning within complex socio-environmental systems. Central to this architecture is the concept of
Reflexive machine learning, defined here as a process through which agents iteratively adjust their
prompts, inference strategies, or actions in response to environmental feedback and task complexity,
thereby supporting context-aware and adaptive decision-making.

The contributions of this work are as follows: (i) introduction of a reflexive multiagent architecture for
causal analysis and policy simulation in socio-environmental contexts; (ii) integration of multimodal
data with LLM-driven agents to complement statistical models through simulation, reasoning, and
hypothesis generation; and (iii) proposal of Reflexive Machine Learning as a natural-language
interface for interpretable modeling of complex systems.

Methods

ClimateAgents

ClimateAgents consists of three components: (i) a perception layer that structures multimodal inputs
into formal representations (e.g., indicators, semantic frames); (ii) a reasoning layer for planning,
inference, and adaptive decision-making; and (iii) an operation layer that performs causal inference,
modeling, and policy simulations, with outputs interpreted via LLMs. A continuous agent feedback
loop enables real-time refinement and contextual adaptation for evidence-based policy support

(Figurel[T).
Causal Inference

Based on former work[8]], this study furhter introduces a three-stage comparative framework for
investigating causal relationships in the context of social science and climate change, aimed at
supporting evidence-based reasoning. The pipeline combines (i) correlation analysis to identify
initial statistical associations, (ii) machine learning based causal discovery to estimate structural
dependencies, and (iii) LLM-guided prompt exploration to surface contextual explanations and
generate policy-relevant hypotheses. Each stage contributes distinct but complementary evidence
toward causal interpretation, facilitating more transparent and informed downstream analysis. This
approach is designed to support the development of empirical insights that can inform decision-
making in complex socio-environmental systems.

Evidence Informed Policy Reasoning

Evidence retrieval is demonstrated through text classification of agent-generated prompts (Figure [2),
which revealed themes related to carbon emission prediction, including model diversity, geographic
specificity, and environmental justice. Using Biopython and the NCBI Entrez database, the system
efficiently retrieves and synthesizes relevant literature, supporting large-scale climate and air quality
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Figure 1: Reflexive Multimodal ClimateAgents Framework
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Figure 2: Perception Layer Framework for Climate Change Data Processing and Model Evaluation.

research. Causal effects are estimated following Rolland et al. [30]], modeling each variable as a
function of its causal parents with additive noise. Leaf nodes are identified using score function
derivatives, and topological ordering is achieved by sequential leaf removal, with the Jacobian
approximated by the Stein gradient estimator and refined through the CAM procedure [30]]. Validation
and interpretation involve domain expertise (Table[T) and standard metrics, with results highlighting
key drivers such as rural and urban access to clean fuels and urbanization growth. To valid LLMs
contribute to causal inference, the framework applies World Bank Development Indicators and
employs a taxonomy of causality [32] grounded in Pearls Causal Hierarchy [33] [34]. This
taxonomy distinguishes direct, preventative, facilitative, resultative, and influential causal verbs,
ensuring LLM inquiries classify relations accurately and avoid confounding [35} 36, 37, [38] 39} 40,
147, 142], [43], [44), [43], [46]. Data on carbon emissions per capita from 265 economies, countries and
regions, covering the period from 2000 to 2020, are sourced from Climate Watch Historical GHG
Emissions.

Results and Discussion

The multi-agent system initiated the analysis using a planning tool that decomposed complex user
queries into actionable subtasks. Execution incorporated multiple tools, including automated sta-
tistical computation, literature analysis, knowledge retrieval from scientific databases, and code
generation for downstream modeling (Figure 2).



Table 1: Compact multi-agent framework for policy scenario modeling. Each agent fulfills a specialized role.

Agent # Name Function
1 Policy Planner Parses prompts, selects features, and modifies datasets.
2 Reasoning Agent Adds causal logic via literature and prior models.
3 Simulation Agent Runs scenarios and compares emissions outcomes.
4 Narrative Generator ~ Summarizes policy effects using data and context.
5 Reporting Agent Formats and stores results for review and analysis.

This study identified three key socioeconomic variables with strong causal effects on per capita carbon
emissions: (i) Access to clean fuels and technologies for cooking, rural (% of rural population)
(EG.CFT.ACCS.RU.ZS), which showed a strong negative relationship with emissions, as higher
access reduces biomass reliance and climate impact in less urbanized regions [47, 48]]; (ii) Access to
clean fuels and technologies for cooking, urban (% of urban population) (EG.CFT.ACCS.UR.ZS),
which similarly lowered emissions in dense populations through improved energy efficiency [49];
and (iii) Urban population (% of total population) (SP.URB.TOTL.IN.ZS), which was positively
associated with emissions, reflecting increased demand for transport, infrastructure, and industry
[50L 511 152]]. These results were derived from a causal analysis of 20 years of data across 265
economies, countries and regions, covering 98 socioeconomic indicators. Full steps are provided in
SI Appendix.

To evaluate this capacity, the system applied instruction-based prompting techniques, including zero-
shot, few-shot, and chain-of-thought (CoT) prompts [53} 9} 54]]. Prompts were anchored to previously
identified causal variablesaccess to clean fuels in rural and urban contexts (EG.CFT.ACCS.RU.ZS
and EG.CFT.ACCS.UR.ZS) and urban population percentage (SP.URB.TOTL.IN.ZS)and structured
using a five-part causal taxonomy from the CausalQuest framework [24], aligned with Pearls Causal
Hierarchy [33] 34]]. The five causal query typesDirect, Preventative, Facilitative, Resultative, and
Influentialwere designed to elicit different dimensions of causal reasoning [31},132]]. An illustrative
output is shown in Figure [3] where the LLM agent (Al Social-Scientist) was prompted to assess
whether disparities in clean fuel access might impact the effectiveness of emission-reduction policies.
The model responded by highlighting the role of infrastructure inequality, policy generalization limits,
and the importance of regional context in designing equitable interventions.

User: Rural areas (EG.CFT.ACCS.RU.ZS) have lower access to clean fuels than urban ones
(EG.CFT.ACCS.UR.ZS), and urbanization (SP.URB.TOTL.IN.ZS) is increasing. Could variability in
clean fuel access affect the effectiveness of environmental policies at reducing emissions?

Al Social-Scientist (GPT-4-turbo): Policy Effectiveness: Greater variability weakens uniform outcomes.
Emission Impact: Urban-focused policies may yield quick results, but lasting success requires rural inclusion.
Urbanization Factor: Shifts where and how policies work; less urbanized regions need tailored approaches.
Policy Design: Reducing variability can support equitable and impactful strategies.

Figure 3: Conversation between a user and an Al social-scientist model (GPT-4-turbo) on clean fuel access and
policy effectiveness.

Summary and Future Perspectives

This study introduces ClimateAgents, a multi-agent framework that integrates large language models
with a data-driven approach for climate policy analysis. Structured into perception, reasoning, and
operation layers, the system combines planning, reasoning, simulation, narrative, and reporting
agents to model complex socio-environmental dynamics. By leveraging the reasoning and synthesis
capabilities of LLMs alongside computational efficiency, ClimateAgents enables flexible analysis of
clean energy, urbanization, and carbon emissions, integrating heterogeneous datasets into interpretable
narratives and visualizations that enhance accuracy and support evidence-based policy.

Nonetheless, limitations remain. Causal inference depends on data quality, simplified assumptions
about emissions may not generalize, and automated script generation for complex simulations is not
yet feasible. Causal inquiry in LLMs is also shaped by social norms and linguistic context [55} 32]].
Future integration of advanced foundation models and generative tools could enhance scalability,



reduce computational costs, and expand predictive depth, establishing ClimateAgents as a flexible
platform for intelligent climate policy simulation.
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Supplementary Information

Knowledge Retrieval

Text classification of agent-generated prompts ([1.1], [3.1] of Figure2]revealed key themes related
to carbon emission prediction. The extracted summaries highlighted model diversity, geographic
specificity, environmental justice considerations, and challenges in temporal and spatial scaling.
The study utilizes the Biopython library and the NCBI Entrez database to provide an example of



literature retrieval and analysis. Running this code snippet allows for efficient retrieval of article
details, including titles, from the PubMed database, facilitating in-depth analysis and synthesis of
research findings. It offers a tool for researchers investigating the complex relationship between
climate change and global air quality, enabling the retrieval and analysis of a large volume of articles.
These results demonstrate the system’s ability to identify cross-cutting concerns in climate-related
modeling efforts.

Causal Effects Estimation

The method employed in this research is adapted from existing approaches to causal modeling,
specifically following the framework outlined by Rolland et al. [30]. In this approach, each variable
is modeled as a function of its direct causal parents in the causal graph, along with an additive noise
term. The data distribution is defined by these causal relationships, and score functions are used
to identify leaf nodes within the graph. Leaf nodes are detected based on the variance of partial
derivatives of the score function, which helps distinguish parent-child relationships among variables.
The nodes in the graph are arranged in order by finding and removing leaf nodes one by one. The
Jacobian of the score can be approximated using the Stein gradient estimator with ridge RBF kernel
regression [30]].

Causal Graph Construction and Score Matching

Based on this finding provided by Rolland et al., 2022, the experiment achieves topological ordering
by sequentially identifying the leaf nodes and removing them one by one. The Jacobian of the score
can be approximated by Stein gradient estimator with ridge RBF kernel regression [30].

Once a topological order is estimated, the causal graph is constrained to be a subgraph of a fully
connected graph. However, pruning is necessary to remove spurious edges, which is achieved using
the CAM pruning process.

CAM Pruning

The methods described above control for confounding variables by retaining key confounders during
variable selection and removing irrelevant variables through correlation analysis. The CAM pruning
process refines the causal graph by eliminating spurious relationships while preserving causal integrity.

After arranging the nodes, the graph is refined by using the CAM pruning process, which removes
unnecessary connections to reveal the actual causal structure, aligning with methods discussed by
Rolland et al.[30]. Detailed outputs are included the following metrics

* Structural similarity: Evaluated using SID and SHD.
* Predictive accuracy: Measured through precision, recall, and F1 score.

* Overall deviation: Assessed using L2 distance.

By highlighting key variablessuch as access to clean fuels in rural and urban areas and urban
population growththe graph supports more targeted and effective policy-making.

Validation: From Correlations to Causation via LLM Inquiries

In the specific context of climate change, do LLMs offer better causal inference? To address the
request involving the exploration of causality factors for carbon emissions using the World Bank

't is noted that "Variable Selection” is to ensure that important confounders are included before pruning
begins, as removing key variables early can lead to residual confounding or spurious relationships. The formal
analysis of correlation removes unrelated variables-those that have no meaningful relationship with the target
variable or the other variables in the system. These variables are unlikely to act as confounders since they do not
introduce residual confounding or spurious relationships when removed.

For validation, after CAM pruning, the causal structure is validated using domain expertise to ensure the
robustness of the inferred causal graph. CAM pruning is not a substitute for confounding control methods. It is
suggested to be used in combination with other techniques to ensure the validity of causal inferences. This is
also the rationale for incorporating LLMs with expertise knowledge for further exploration.



variables ("EG.CFT.ACCS.RU.ZS", "EG.CFT.ACCS.UR.ZS", "SP.URB.TOTL.IN.ZS") as the prior
benchmark, the study categorizes questions into five main types for LLMs causality taxonomy
prompts described in Txonomy of Causality. The study follows [24]’s CausalQuest database, with
a focus on the economic and climate change context. Similarly, the study adopts Pearls Causal
Hierarchy (PCH) framework ([33} 134]), and defines a causal question as one that meets the following
criteria: a question is considered causal if it involves, or if its solution process includes, any inquiry
into the effects given a specific cause, and the causes given a specific effect, or the causal relationship
between the given variables.

Taxonomy of Causality

The causal taxonomy-"Direct, Preventative, Facilitative, Resultative, and Influential"-describes
various types of causal relationships that verbs can imply (see SI-Table[2]). This approach controls for
confounding variables during LLM inquiries by leveraging a structured causal taxonomy to identify,
classify, and account for different types of causal relationships[31} 32]].

Table 2: Causal taxonomy used in LLM-based inquiries

Category Description and Example

Direct Refers to actions or driving forces that have an immediate impact on out-
comes. The cause directly influences the effect without intermediaries.
Typical verbs: “increase”, “trigger” [35 136} 137} 138].
Example: Urban access to clean fuels directly reduces carbon emissions.
Preventative Causes that reduce or prevent the likelihood of a negative outcome. Verbs:
“prevent”, “reduce”, “inhibit” [39].
Example: Improved access to clean technologies prevents an increase in
carbon emissions.
Facilitative Causes that enable or support an effect without directly causing it. Verbs:
“enable”, “allow”, “support” [40} 41].
Example: Access to urban clean fuels facilitates a reduction in carbon
emissions.
Resultative Causes that lead to specific outcomes, emphasizing consequences. Verbs:
“lead to”, “result in”, “cause” [42} 43]].
Example: Urban population increase results in higher carbon emissions.
Influential Factors that indirectly affect the likelihood or intensity of an outcome. Verbs:
“influence”, “impact”, “affect” 44} 145]|46].
Example: Urbanization influences carbon emissions through changes in
energy use patterns.
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