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Publicly available dataset (Stewart et al., 2024): Labels for camera trap data obtained through citizen science approaches typically feature disagreement amongst
volunteers, i.e. label ground truth uncertainty.

e Camera trap images with associated volunteer
classifications from Zooniverse.
e Subset of images (~14%) classified by expert.

e >40 species of East African mammal, as well as
>60 species of bird.

Substantial class imbalance.

We focus on the 17 most commonly observed species.

CLIMATE CHANGE IMPACT

Climate change is rapidly affecting biodiversity -
across the globe. Camera traps are an indispensable ?; SR
tool for monitoring biodiversity. Deep learning can
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METHODOLOGY
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the ongoing biodiversity crisis (Green et al., 2020).
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