# Climate Adaptation-Aware Flood Prediction for Coastal Cities Using Deep Learning

Bilal Hassan, Areg Karapetyan, Aaron Chung Hin Chow, and Samer Madanat New York University Abu Dhabi, UAE



### Abstract

Rising sea levels threaten coastal regions, demanding efficient flood prediction methods. Traditional models are accurate but computationally expensive, limiting real-time use. We propose a deep learning framework for predicting coastal flooding under varying sea-level rise (SLR) scenarios and shoreline adaptations. Our model generalizes across diverse regions, achieving a 19.96% lower MAE for inundation prediction and a 0.55% improvement in non-flooded region accuracy over existing methods.

## Introduction

Coastal flooding is intensifying due to climate change and sea-level rise (SLR), posing significant risks to urban areas, infrastructure, and economies [1]. Traditional hydrodynamic models provide accurate predictions but are computationally expensive, making real-time predictions impractical [2].

Deep learning (DL) approaches offer a promising alternative by accelerating predictions while maintaining accuracy [3]. However, existing methods often struggle with data scarcity, high-dimensional outputs, and limited generalization across different regions. We introduce a novel DL framework that leverages computer vision techniques to predict coastal flooding under various SLR scenarios and shoreline adaptation strategies [4]. Our model:

- Enables rapid, high-resolution flood mapping, supporting real-time flood risk management and climate adaptation planning.
- Generalizes across regions, using Abu Dhabi and San Francisco data.
- Outperforms state-of-the-art methods, reducing mean absolute error (MAE) by 19.96%.

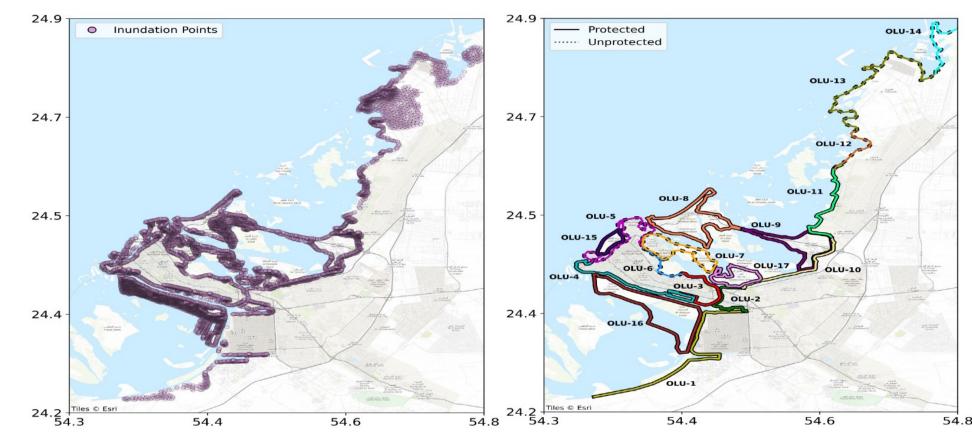


Figure 1. Abu Dhabi coastal region. (a) Inland inundation points under the 0.5 m SLR scenario for AD and 1.0 m SLR for SF. (b) OLU boundaries.

# Methodology

#### Dataset:

- Coastal regions: Abu Dhabi (AD) and San Francisco (SF).
- Simulation Tool: Delft3D, with high-resolution bathymetry, digital elevation models, and ERA5 climate data.
- Flood Events: Simulated under wind, wave, and tidal forcing for realistic inundation patterns.

- o SLR Scenarios: 0.5m for AD and 1.0m for SF.
- Shoreline Adaptations: Modeled using Operational Landscape Units
  (OLUs) to assess the impact of protective measures.

#### Preprocessing:

- Inundation points mapped to a 1024×1024 grid for the DL model.
- Protection scenarios encoded as binary feature maps, with water depth values as targets.

#### CASPIAN-v2:

- Encoder-Decoder CNN network for flood prediction.
- Multi-Attention ResNeXt (MARX) blocks capture complex flood patterns.
- SLR-Enhanced Encoding (SEE) blocks integrate SLR levels dynamically.
- Skip connections & feature refinement improve spatial details.

#### **Training & Optimization:**

- Loss Function: A hybrid of Huber, Log-Cosh, and Quantile loss to balance accuracy and robustness.
- Optimization: Adam optimizer with learning rate 8×10<sup>-4</sup>, batch size = 2, trained for 200 epochs with early stopping.
- Data Augmentation: Random cut-outs to enhance model generalization.

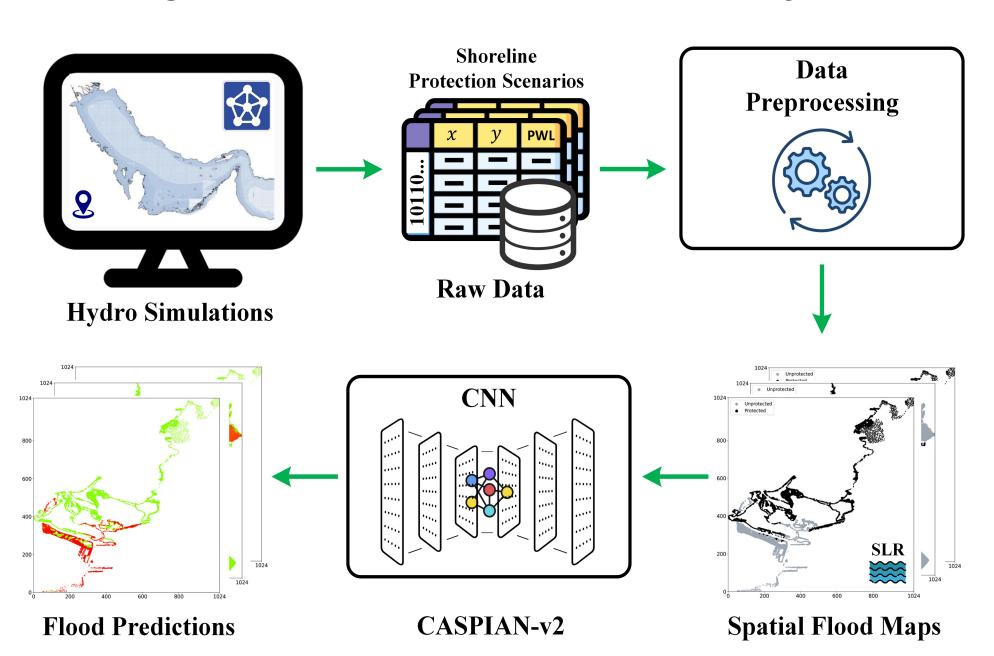


Figure 2. Proposed Framework for Coastal Flood Prediction

# Results

Our proposed CASPIAN-v2 deep learning framework demonstrates high accuracy and strong generalization across diverse coastal regions.

- Predicted flood maps closely align with ground truth, capturing spatial variations effectively.
- Strong generalization results across AD and SF datasets.
- Surpasses traditional ML models and DL baselines.
- 19.96% lower MAE in predicting flood compared to existing models.
- 0.55% more accurate for non-flooded regions, reducing false positives.

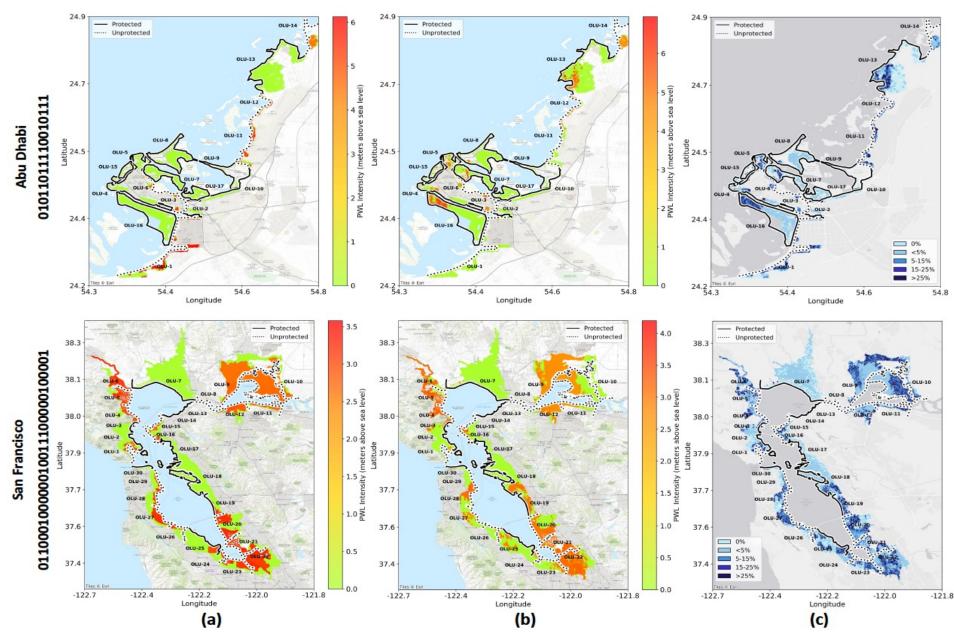


Figure 3. Qualitative evaluation of CASPIAN-v2 (a) Ground truth inundation maps for representative AD and SF scenarios (b) Predicted inundation values. (c) Absolute error distributions of predicted inundation values.

Table 1. Performance comparison of the proposed CASPIAN-v2 model with SOTA ML and DL models. The best and second-best results are highlighted in red and blue, respectively.

| Туре        | Model                    | Prediction Accuracy        |        |         |                           |                           |                         |                 |       | Computational Efficiency |      |          |
|-------------|--------------------------|----------------------------|--------|---------|---------------------------|---------------------------|-------------------------|-----------------|-------|--------------------------|------|----------|
|             |                          | MAE ↓                      | RMSE ↓ | RTAE ↓  | $\delta > 0.5 \downarrow$ | $\delta > 0.1 \downarrow$ | $\mathbf{R}^2 \uparrow$ | <b>Acc[0]</b> ↑ | DSC ↑ | Param↓                   | TT ↓ | IT ↓     |
| Simulator   | AD Pipeline <sup>†</sup> | Served as the ground truth |        |         |                           |                           |                         |                 |       |                          | -    | 71–73h   |
|             | SF Pipeline <sup>o</sup> |                            |        |         |                           |                           |                         |                 |       |                          | -    | 3.5–6.0h |
| ML<br>(1-D) | Naïve                    | 1.53                       | 3.54   | 1746.06 | 74.92%                    | 80.11%                    | 0.54                    | 31.01%          | 0.38  | -                        | 62s  | 0.15s    |
|             | RF                       | 0.54                       | 0.73   | 264.95  | 36.77%                    | 72.20%                    | 0.79                    | 34.19%          | 0.41  | -                        | 75s  | 0.18s    |
|             | Linear                   | 0.12                       | 0.19   | 64.98   | 7.87%                     | 14.03%                    | 0.94                    | 59.28%          | 0.62  | -                        | 65s  | 0.16s    |
|             | XGBoost                  | 0.25                       | 0.24   | 164.16  | 16.27%                    | 49.88%                    | 0.93                    | 44.10%          | 0.47  | -                        | 198s | 0.21s    |
|             | SVR                      | 0.20                       | 0.24   | 72.31   | 9.24%                     | 41.17%                    | 0.92                    | 45.46           | 0.48  | -                        | 79s  | 0.19s    |
|             | Lasso Poly               | 0.09                       | 0.12   | 28.15   | 4.47%                     | 15.04%                    | 0.96                    | 55.78%          | 0.64  | -                        | 72s  | 0.17s    |
|             | Kriging                  | 0.10                       | 0.24   | 39.90   | 5.22%                     | 11.59%                    | 0.94                    | 62.88%          | 0.63  | -                        | 76s  | 0.18s    |
| DL<br>(1-D) | MLP                      | 0.64                       | 2.72   | 524.17  | 32.82%                    | 41.94%                    | 0.65                    | 36.91%          | 0.43  | 0.01M                    | 14h  | 5.03s    |
|             | CCT                      | 0.90                       | 2.32   | 843.54  | 48.08%                    | 64.63%                    | 0.66                    | 34.01%          | 0.42  | 11.05M                   | 18h  | 0.26s    |
| DL<br>(2-D) | Atten-Unet               | 0.10                       | 0.37   | 11.82   | 3.14%                     | 16.70%                    | 0.91                    | 95.26%          | 0.73  | 12.07M                   | 46h  | 0.24s    |
|             | Atten-Unet*              | 0.10                       | 0.36   | 11.65   | 3.31%                     | 15.62%                    | 0.92                    | 94.99%          | 0.74  | 12.07M                   | 47h  | 0.27s    |
|             | Swin-Unet                | 0.06                       | 0.27   | 6.72    | 1.47%                     | 12.94%                    | 0.95                    | 98.10%          | 0.80  | 8.29M                    | 26h  | 0.24s    |
|             | CASPIAN                  | 0.05                       | 0.36   | 5.85    | 1.01%                     | 4.79%                     | 0.92                    | 98.84%          | 0.82  | 0.36M                    | 22h  | 0.22s    |
|             | Ours                     | 0.04                       | 0.30   | 6.54    | 0.89%                     | 3.55%                     | 0.93                    | 99.39%          | 0.84  | 0.38M                    | 22h  | 0.22s    |

## Conclusion

We present CASPIAN-v2, a DL-based framework for predicting coastal flooding under various SLR scenarios and shoreline adaptation strategies. By treating flood prediction as a computer vision task, our model efficiently captures high-resolution inundation patterns while significantly improving accuracy and computational efficiency over traditional methods.

#### References

- 1. R.-Q. Wang, et al., The influence of sea level rise on the regional interdependence of coastal infrastructure, Earth's Future 6 (5) (2018) 677–688.
- A. P. Kyprioti, et al., Storm hazard analysis over extended geospatial grids utilizing surrogate models, Coastal Engineering 168 (2021) 103855.
- 3. A. Mosavi, et al., Flood prediction using machine learning models: Literature review, Water 10 (11) (2018) 1536.
- 4. A. Karapetyan, et al., Deep vision-based framework for coastal flood prediction under climate change impacts and shoreline adaptations, arXiv preprint arXiv:2406.15451 (2024).

