Climate Adaptation-Aware Flood Prediction for
Coastal Cities Using Deep Learning

Abstract

Rising sea levels threaten coastal regions, demanding efficient flood
prediction methods. Traditional models are accurate but computationally
expensive, limiting real-time use. We propose a deep learning framework
for predicting coastal flooding under varying sea-level rise (SLR) scenarios
and shoreline adaptations. Our model generalizes across diverse regions,
achieving a 19.96% lower MAE for inundation prediction and a 0.55%
improvement in non-flooded region accuracy over existing methods.

Introduction

Coastal flooding is intensifying due to climate change and sea-level rise
(SLR), posing significant risks to urban areas, infrastructure, and economies
[1]. Traditional hydrodynamic models provide accurate predictions but are
computationally expensive, making real-time predictions impractical [2].
Deep learning (DL) approaches offer a promising alternative by accelerating
predictions while maintaining accuracy [3]. However, existing methods often
struggle with data scarcity, high-dimensional outputs, and limited
generalization across different regions. We introduce a novel DL framework
that leverages computer vision techniques to predict coastal flooding under
various SLR scenarios and shoreline adaptation strategies [4]. Our model:
o Enables rapid, high-resolution flood mapping, supporting real-time flood
risk management and climate adaptation planning.
o Generalizes across regions, using Abu Dhabi and San Francisco data.
o Outperforms state-of-the-art methods, reducing mean absolute error
(MAE) by 19.96%.
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Figure 1. Abu Dhabi coastal region. (a) Inland inundation points under the 0.5 m SLR scenario for AD and 1.0 m SLR for
SF. (b) OLU boundaries.

Methodology

Dataset:

o Coastal regions: Abu Dhabi (AD) and San Francisco (SF).

o Simulation Tool: Delft3D, with high-resolution bathymetry, digital
elevation models, and ERAS climate data.

o Flood Events: Simulated under wind, wave, and tidal forcing for realistic
inundation patterns.
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o SLR Scenarios: 0.5m for AD and 1.0m for SF.
o Shoreline Adaptations: Modeled using Operational Landscape Units
(OLUs) to assess the impact of protective measures.

Preprocessing:

o Inundation points mapped to a 1024x1024 grid for the DL model.

o Protection scenarios encoded as binary feature maps, with water depth
values as targets.

CASPIAN-v2:

o Encoder-Decoder CNN network for flood prediction.

o Multi-Attention ResNeXt (MARX) blocks capture complex flood patterns.

o SLR-Enhanced Encoding (SEE) blocks integrate SLR levels dynamically.

o Skip connections & feature refinement improve spatial details.

Training & Optimization:

o Loss Function: A hybrid of Huber, Log-Cosh, and Quantile loss to
balance accuracy and robustness.

o Optimization: Adam optimizer with learning rate 8x107™, batch size = 2,
trained for 200 epochs with early stopping.

o Data Augmentation: Random cut-outs to enhance model generalization.
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Figure 3. Qualitative evaluation of CASPIAN-v2 (a) Ground truth inundation maps for representative AD and SF scenarios.
(b) Predicted inundation values. (c) Absolute error distributions of predicted inundation values.

Table 1. Performance comparison of the proposed CASPIAN-v2 model with SOTA ML and DL models. The best and
second-best results are highlighted in red and blue, respectively.
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Figure 2. Proposed Framework for Coastal Flood Prediction

Results

Our proposed CASPIAN-v2 deep learning framework demonstrates high
accuracy and strong generalization across diverse coastal regions.

o Predicted flood maps closely align with ground truth, capturing spatial
variations effectively.

Strong generalization results across AD and SF datasets.

Surpasses traditional ML models and DL baselines.

19.96% lower MAE in predicting flood compared to existing models.
0.55% more accurate for non-flooded regions, reducing false positives.
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Type Model Prediction Accuracy Computational Efficiency
MAE| RMSE | RTAE| § >0.5) 6 > 0.1] R21 Acc[0]1 DSC 1 |Param| TT] IT/|
Simulator AD Pipeline! Served as the ground truth ) ) 71=73h
SF Pipeline® - - 3.5-6.0h
Naive 153 354  1746.06 74.92%  80.11% 054 31.01% 038 - 62s  0.15s
RF 054 073 26495 3677%  72.20% 0.79 34.19%  0.41 - 75s  0.18s
Linear 012 019 6498  787%  14.03% 094 5928% 0.62 - 65s  0.16s
(1;%) XGBoost | 025 024 16416 1627%  49.88% 093 44.10% 0.47 - 198s  021s
SVR 020 024 7231  924%  41.17% 092 4546  0.48 - 795 0.19s
LassoPoly | 0.09  0.12  28.15  447%  1504% 096 5578% 0.64 - 725 0.17s
Kriging 010 024 3990  522%  11.59% 094 62.88% 0.63 - 765 0.18s
DL MLP 064 272 52417 32.82%  4194% 0.65 3691% 043 | 0.0IM 14h  5.03s
(1-D) CCT 090 232 84354 48.08%  64.63% 0.66 34.01% 042 | 11.05M 18h  0.26s
Atten-Unet | 0.10 037 1182  3.14%  1670% 091 9526% 0.73 | 1207M 46h  0.24s
Atten-Unet* | 0.10 036  11.65  331%  15.62% 092 9499% 0.74 | 1207M 47h  0.27s
DL Swin-Unet | 0.06  0.27 6.72 147%  12.94% 095 98.10% 0.80 | 8.29M 26h  0.24s
(2-D) | CASPIAN | 005 036 5.85 1.01% 479% 092 98.84% 0.82 | 0.36M 22h  0.22s
Ours 0.04 030 654  0.89% 355% 093 9939% 084 | 038M 22h  0.22s
Conclusion

We present CASPIAN-v2, a DL-based framework for predicting coastal
flooding under various SLR scenarios and shoreline adaptation strategies.
By treating flood prediction as a computer vision task, our model efficiently
captures high-resolution inundation patterns while significantly improving
accuracy and computational efficiency over traditional methods.
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