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Abstract

Climate change and sea-level rise (SLR) pose escalating threats to coastal cities,
intensifying the need for efficient and accurate methods to predict potential flood
hazards. Traditional physics-based hydrodynamic simulators, although precise, are
computationally expensive and impractical for city-scale coastal planning applica-
tions. Deep Learning (DL) techniques offer promising alternatives, however, they
are often constrained by challenges such as data scarcity and high-dimensional
output requirements. Leveraging a recently proposed vision-based, low-resource
DL framework, we develop a novel, lightweight Convolutional Neural Network
(CNN)-based model designed to predict coastal flooding under variable SLR projec-
tions and shoreline adaptation scenarios. Furthermore, we demonstrate the ability
of the model to generalize across diverse geographical contexts by utilizing datasets
from two distinct regions: Abu Dhabi (AD) and San Francisco (SF). Our findings
demonstrate that the proposed model significantly outperforms state-of-the-art
methods, reducing the mean absolute error (MAE) in predicted flood depth maps
on average by nearly 20%. These results highlight the potential of our approach
to serve as a scalable and practical tool for coastal flood management, empower-
ing decision-makers to develop effective mitigation strategies in response to the
growing impacts of climate change. Project Page: https://caspiannet.github.io/

1 Introduction

Low-elevation coastal zones [1] are hotspots for climate change-induced risks, with flood threats
to cities projected to rise nine-fold by 2050 [2]. To safeguard residents, communities are armoring
their shorelines with engineered structures like seawalls [3, 4]. While beneficial for local flood
protection, these defenses can alter coastal hydrodynamics, unintentionally amplifying flooding in
other, otherwise unaffected, regions [5, 6, 7].

To understand these complex dynamics, physics-based simulators like Delft3D [8] are employed.
While these tools provide detailed accuracy, they are computationally prohibitive, often requiring days
to simulate a single shoreline scenario [9, 10, 11]. This burden limits their use in coastal planning,
where numerous adaptation strategies must be evaluated [12, 13]. In response, data-driven methods
(commonly referred to as surrogate models or metamodels) have emerged as promising alternatives
for rapid flood prediction [14, 15], learning complex input-output relationships without explicitly
modeling the underlying physics.

Despite these advancements, limited attention has been paid to the joint incorporation of SLR and
shoreline protection scenarios. Developing accurate DL models for this climate adaptation-aware
setting poses challenges like data scarcity and the high dimensionality of outputs [9, 10, 11]. A prior
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Figure 1: Study areas: (a) San Francisco Bay (30 OLUs) and (b) Abu Dhabi (17 OLUs). Left panels
show baseline flooding without protection, while right panels show the defined OLUs.

vision-based framework demonstrated the viability of this approach, but was limited to a single loca-
tion and a particular SLR scenario [11]. Taking a step further, this work introduces a novel DL model
that generalizes across distinct coastal regions and multiple SLR levels. Our key contributions are:

1. We develop a novel DL model, CASPIAN-v2, that accurately predicts high-resolution
coastal flooding under various SLR and shoreline protection strategies. Its lightweight
design enables fast, scalable prediction, slashing the compute time of hydrodynamic models.

2. We provide a new dataset of flood maps for two vulnerable locations, Abu Dhabi and the
San Francisco Bay Area, covering diverse SLR scenarios and shoreline adaptations.

3. We conduct a rigorous benchmark against state-of-the-art (SOTA) models to validate the
performance and generalization capabilities of our proposed framework.

Put together, this research provides engineers and policymakers with a practical flood prediction
tool, readily integrated into large-scale planning workflows to enhance the resilience of coastal cities
against accelerating sea level rise.

2 Study Areas and Dataset Generation

In this research, we examine two vulnerable metropolitan coastal areas (AD and the SF Bay Area) to
predict coastal flooding under various SLR values and shoreline protection scenarios. Both locations
feature low-lying topographies and significant urbanization, making them particularly susceptible to
environmental effects. To model diverse shoreline protection strategies under various SLR scenarios,
the complex coastlines were discretized into Operational Landscape Units (OLUs): 17 for AD, as
outlined in [16], and 30 for the SF Bay Area, based on prior studies [3, 5, 17]. Figure 1a depicts the
OLU delineations and flood-prone zones in both regions.

The ground truth flood data for training our DL model was generated using the Delft3D model [8], a
high-fidelity hydrodynamic simulator that integrates key physical processes like SLR and tidal dynam-
ics. Further details concerning the employed hydrodynamic model, its validation, and the specifics of
the resulting dataset, including training, validation, and test splits, can be found in Appendix Sec. A.

3 Problem Statement

In the studied climate adaptation-aware costal flood prediction problem, we seek to predict the
maximum floodwater levels along the coast based on a given input protection scenario and SLR value.
To formalize, denote by d,, the number of candidate shoreline segments considered for fortification
and let z; € {0, 1} be the corresponding decision made for the segment i, with 1 indicating the
placement of containments and 0 otherwise. Then, a protection scenario would be represented by a
d-dimensional binary vector & and the set of all possible protection scenarios (2% in total) can be de-

finedas X = {x | z € {0,1}%}. Let y be a (non-negative) real-valued vector quantifying the peak
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Figure 2: An overview of the proposed framework for coastal flood prediction.

water levels at dy, nearshore locations of interest. With this notation, the problem can be formulated as
a regression task of learning a mapping function f : & € X,l € R — y € R%, where | denotes the
SLR level, provided with a set {(z*, ¥, y*) | k € [n],I* € R,z*F € X,y* € R%} of n available
training examples. Note that, for double-digit values of d, the cardinality of the training set can turn
disproportionately small compared to that of the input space even when considering a single value for
SLR (i.e., n < 2%), enforcing an extremely low-resource learning setting. The inference of f is fur-
ther complicated by its output size d,,, which is typically in the order of tens to hundreds of thousands.

4 Proposed Methodology

Our end-to-end framework, illustrated in Figure 2, enables rapid and accurate coastal flood prediction.
The pipeline converts data from physics-based hydrodynamic simulations into 2D spatial maps, which
are used to train our core predictive model, CASPIAN-v2. Once trained, the model can generate
high-resolution flood maps for new scenarios in seconds (inference) and can be efficiently adapted to
new geographical regions or climate conditions via a fine-tuning path.

The core of the framework is CASPIAN-v2, an advanced encoder-decoder architecture designed for
robust flood prediction. It incorporates several key innovations: a novel Multi-Attention ResNeXt
(MARX) block in the bottleneck stage enhances the model’s focus on the most critical spatial
features of a flood event. Furthermore, a specialized SLR-Enhanced Encoding (SEE) block in the
decoder integrates SLR data, guiding the reconstruction process to produce predictions conditioned
on different climate scenarios.

To optimize this complex regression task, we developed a custom hybrid loss function. By combining
Huber, Log-Cosh, and Quantile losses, this function makes training more robust to outliers, stabilizes
gradients, and provides a balanced handling of over- and under-prediction errors. This tailored
approach is critical to achieving the model’s high accuracy. A detailed exposition of the model
architecture and the formal loss function are provided in the Appendix Sec. B.

5 Results

Quantitative Analysis: To validate the performance of CASPIAN-v2, we benchmarked it against a
comprehensive suite of SOTA ML and DL models. The full experimental protocol, including dataset
splits, baseline model specifications, and evaluation metrics, is detailed in the Appendix Sec. C.
The evaluation demonstrates the superior predictive power of our proposed model. Quantitatively,
CASPIAN-v2 significantly outperforms the best traditional ML model (Lasso with Polynomial
features), reducing the AMAE by 51.65%. It also shows a 19.96% AMAE reduction compared to the
best-performing SOTA DL model. A key advantage of CASPIAN-v2 is its computational efficiency; it
can predict 72 flood scenarios in approximately 16 seconds, a task that would require the physics-based
Delft3D simulator around 115 days to complete. This dramatic speed-up underscores its potential
as a practical tool for rapid, real-world coastal planning. The full quantitative evaluation, including



performance on test and holdout sets, a complete SOTA comparison table, and generalizability
assessments is provided in the Appendix Sec. D.1.

Qualitative Analysis: For further scrutiny, we visually analyzed the model’s ability to accurately
capture the spatial extent of flooding. Figure 3 presents a visual comparison of the spatial accuracy
between CASPIAN-v2 and the top-performing baseline model on a representative test case. The map
breaks down the prediction into correctly matched inundated areas (green), over-predicted areas where
the model incorrectly flagged flooding (orange), and under-predicted areas where it missed flooding
(purple). The visualization clearly reveals that while the baseline model produces a more fragmented
prediction with significant patches of both over- and under-prediction, the output from CASPIAN-v2
aligns much more closely with the ground truth. Its predicted flood extent is more coherent and
captures the true inundation boundaries with far fewer spatial errors. This visual evidence aligns with
the quantitative metrics, confirming the model’s superior ability to learn and reproduce complex flood
dynamics. Additional qualitative visualizations are available in the Appendix Sec. D.2.
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Figure 3: Visual comparison of spatial prediction accuracy. Green indicates correctly predicted
inundated areas (true positives), orange indicates over-prediction (false positives), and purple indicates
under-prediction (false negatives). CASPIAN-v2 demonstrates a larger matched area and more
coherent flood boundaries than the top-performing baseline.

6 Concluding Remarks

In this work, we introduced CASPIAN-v2, a state-of-the-art deep learning framework for coastal
flood prediction that is significantly more accurate and computationally efficient than existing
methods, achieved through a novel architecture with custom loss and attention mechanisms. Crucially,
the model is designed for practical use, offering both interpretability to build trust and predictive
uncertainty quantification to guide decision-making (see Appendix, Sec. G). This makes CASPIAN-
v2 a powerful tool for stakeholders, enabling the rapid assessment of thousands of coastal protection
scenarios to address critical climate adaptation challenges.
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A Details of the Study Areas and Dataset Generation

A.1 Data Sources and Hydrodynamic Simulations

The ground truth flood data used for training and evaluating our surrogate model was generated
through a series of physics-based hydrodynamic simulations using the Delft3D model. This model
integrates key physical processes including SLR and tidal dynamics. High-resolution bathymetry
and digital elevation models (DEM) (with data sources such as TanDEM-X, Landsat-8, and Nautical
Charts) were used for both regions (AD and SF Bay Area) to ensure accurate modeling of coastal
topography that transitions smoothly between sea and the land. While some authors [18, 19, 20, 21,
22] address subgrid details by using separate subgrid nesting methods, we have retained the same
governing equations but used a 30 m model grid in the areas of interest, and Delft3D is capable of
automatically modeling wetting and drying of grid cells from one time step to the next.

The accuracy and reliability of these physics-based models were established through rigorous val-
idation against real-world observations. For San Francisco Bay, the Delft3D model was adapted
from the CoSMoS model originally developed by [23] and adapted to San Francisco Bay by [24],
and validated in the past using tidal gages at 9 tidal gage locations in and around San Francisco Bay.
Pearson correlation coefficients ranged from 0.9862 to 0.9996, while the root mean square (RMS)
ratios (the ratio of modeled versus measured RMS amplitudes) ranged from 0.973 to 1.027 (please
refer to [24])

For Abu Dhabi, the Delft3D model was validated using water level data from 196 tidal gage locations
throughout the Gulf (as the hydrodynamic model encompassed the entire Gulf in addition to the
western portions of the Gulf of Oman). The water levels at these locations were compared with one
month’s worth of hydrodynamic simulation, and the resulting absolute root mean square error (RMSE)
values ranged from 0.0013 to 0.0043 m in the vicinity of Abu Dhabi. More validation details for Abu
Dhabi can be found in [16]. Given this strong validation, the outputs of the hydrodynamic simulations
were considered a reliable proxy for ground truth for the purposes of training and evaluating our deep
learning framework.

While the Gulf does not typically experience tropical cyclones, it is known for its northwesterly winds
generally occurring with winds at about 20 m/s with sudden onset and sustained over a period of up
to 3-5 days. These are called the Shamal winds (meaning “North” in Arabic) and occur at least 10
times annually, mainly during the winter months [25, 26]. Accordingly, for Abu Dhabi, we applied
a nested SWAN model to simulate wind and wave effects, particularly the impact of these Shamal
winds, which can significantly intensify tidal flooding risks. Both the SWAN model and Delft3D
models were forced using ERAS meteorological data in the Gulf.

In both geographic locations, our aim was to generate data that correspond to a hypothetical future
extreme flooding scenario, where there was little to no flooding observed without SLR. For AD,
simulations were based on a 0.5 m SLR scenario, consistent with regional projections for mid-century
SLR (as described above) [27]. The 0.5 m SLR scenario was then coupled with storm surges resulting
from a sample 3-month long Shamal event. In contrast, flood simulations for the SF Bay Area were
conducted under three SLR scenarios: 0.5 m, 1.0 m, and 1.5 m, which reflects a possible future
scenario for San Francisco Bay in the year (somewhere between 2050-2100 depending on the climate
change scenario pathway (between SSP2-4.5 and SSP5-8.5) from IPCC ARG report [27]. Table 1
provides a comprehensive overview of the datasets generated for this study, which are partitioned
into three categories based on their purpose. The Main Set, comprising the largest datasets from AD
(0.5 m SLR) and SF (1.0 m SLR), was used for the primary training, validation, and testing of the
CASPIAN-v2 model. The Holdout Set consists of scenarios intentionally curated to be challenging
(such as protecting one entire side of the SF Bay while leaving the other exposed) and was used
for blind testing of the primarily trained model’s performance on complex spatial schemes not seen
during training. Finally, the Generalizability Set includes SF scenarios at different SLR levels (0.5 m
and 1.5 m) and was used exclusively to evaluate the ability of the model to adapt to new environmental
conditions via fine-tuning.

To balance the need to model a larger number of modeled tidal cycles per simulation, with the
computational time and storage space used for the simulations, a 3-month simulation period was
also applied for San Francisco Bay. Although our San Francisco model includes riverine input from
the Sacramento and San Joaquin Rivers, the inflow rates into the Bay were baseline values rather
than for extreme fluvial flood events. While we acknowledge that incorporating more hydrodynamic



forcing conditions to include pluvial and riverine floods, as well as extreme storm events, can refine
the hydrodynamic model to reflect more extreme flooding, our overall scope in this paper is in the use
of machine learning to be able to act as a surrogate for a hydrodynamic model running under different
SLR scenarios. The detailed protocols for how these datasets were split and used are described in
Section A.3.

Table 1: Dataset details for AD and SF regions, including OLUs, SLR depths, and the number of
unique shoreline protection scenarios. The Main Set was used for primary model training and
testing. The Holdout Set was used for blind testing on challenging scenarios. The Generalizability
Set was used to evaluate model adaptability to new SLR conditions via fine-tuning.

Region OLUs SLR Protection Scenarios

17 OLUs: 1 (Mussafah), 2 (Bain Al Jesrain), 3 (Grand

Mosque District), 4 (AD Island West), 5 (Marina, CBD, .

Al Mina), 6 (AD Island East), 7 (Al Reem Island), 8 ~0-5m 142 (Main Set)
AD (Saadiyat Island), 9 (Yas Island), 10 (Al Raha Island), 0.5 m 32 (Holdout Set)
11 (Al Shahama), 12 (Al Rahba), 13 (New Port City), 14

(Ghantoot), 15 (Lulu Island), 16 (Hudayriat Island), 17

(Inner Islands)

30 OLUs: 1 (Richardson), 2 (Corte Madera), 3 (San
Rafael), 4 (Gallinas), 5 (Novato), 6 (Petaluma), 7 (Napa

- Sonomay), 8 (Carquinez North), 9. (Suisun Slough), 10 1 oy 285 (Main Set)
(Montezuma Slough), 11 (Bay Point), 12 (Walnut), 13
(Carquinez South), 14 (Pinole), 15 (Wildcat), 16 (Point 1.0 m 46 (Holdout Set)

SF Richmond), 17 (East Bay Crescent), 18 (San Leandro), 0.5 m 32 (Generalizability Set)
19 (San Lorenzo), 20 (Alameda Creek), 21 (Mowry), 22 15 32 (G lizability Set
(Santa Clara Valley), 23 (Stevens), 24 (San Francisquito), ~m (Generalizability Set)
25 (Belmont - Redwood), 26 (San Mateo), 27 (Colma
- San Bruno), 28 (Yosemite - Visitacion), 29 (Mission -
Islais), 30 (Golden Gate)

We ran individual Delft3D scenarios (each with a 3-month simulation time as described above) to
collect hourly inland inundation data under different coastal protection scenarios to create a dataset
for training and validating our DL model. The detailed process for transforming this raw simulation
output into the 2D spatial flood maps required by our model is presented in the Section A.2. Our
findings highlight the importance of holistic regional flood control measures, especially given the
intricate interplay between protected and unprotected zones. Further, the datasets from two regions
allowed us to assess the applicability and reliability of the DL model in different vulnerable coastal
settings.

The computational cost of generating a peak flood depth map using the coupled hydrodynamic
model, which underscores the need for an efficient surrogate, varies significantly between the two
study regions. For the coast of Abu Dhabi, the process to generate a map such as the one shown
in Fig. la(b) takes approximately 71 to 73 hours of elapsed runtime, equating to 1500 to 1660
CPU-hours, depending on the specific protection scenario. This comprehensive simulation includes
Delft3D runs, which require 6 to 7 hours on 28 CPU cores (Intel Xeon E5-2680 @ 2.40 GHz; ~
168—-196 CPU-hours), and SWAN simulations, which take about 10 to 11 hours on 128 CPU cores
(AMD EPYC 7742 @ 2.25GHz; ~ 1280-1408 CPU-hours). Subsequent post-processing and run-up
calculations using Matlab scripts add approximately 55 hours on a single core. In contrast, generating
a similar map for San Francisco Bay (see Fig. 1a(a)) is computationally less demanding, requiring
approximately 3.5 to 6.0 hours of elapsed time, or 84.5 to 141 CPU-hours. The Delft3D runs for
this region take about 3 to 5 hours on 28 CPU cores, and the post-processing of these outputs takes
between 0.5 and 1.0 hours on a single core. It is important to note that SWAN and run-up calculations
were not performed for the San Francisco Bay shoreline, as its relatively sheltered inland location
makes these components unnecessary, accounting for the substantial difference in computational cost.



A.2 Data Preprocessing

The raw, tabular data generated by the Delft3D simulator, which consists of inundation coordinates
and corresponding peak water level (PWL) values, is not directly compatible with our 2D DL model.
Therefore, a multi-step preprocessing pipeline was developed to transform this data into a structured
grid format suitable for a computer vision task.

The first key step was to map the inundation coordinates onto a standardized 1024 x 1024 spatial
grid. This was achieved by defining the grid boundaries based on the maximum spatial extent of
all simulation data and then assigning each inundation point to its nearest grid cell. In cases where
multiple inundation points mapped to the same cell due to the high density of the data, a conflict
resolution strategy was employed that reassigned the conflicting points to the nearest available empty
cell, ensuring a unique one-to-one mapping.

Subsequently, we incorporated the shoreline protection information. For each inundation point, we
calculated its proximity to the nearest protected and unprotected OLUs and assigned it a class based
on which was closer. This classification, along with the PWL values, was then used to construct
the final input and output matrices for training. The shoreline protection scenarios were encoded as
binary strings, where *0’ indicates unprotected OLUs and 1’ denotes protected OLUs. This entire
process ensures that the model receives spatially coherent input that encodes not just water levels, but
also the crucial context of shoreline defense configurations.

A.3 Dataset Splits

The data from both regions is divided into sets for primary model training and for subsequent
fine-tuning to assess generalization. The composition of these datasets is detailed in Table 2.

Table 2: Dataset details for primary training and fine-tuning.

Type Region SLR Total Train  Validation  Test
Primar AD 05m 142 96 10 36
y SF 10m 285 225 24 36
S SF 05m 30 20 4 6
£ SF 15m 30 20 4 6

To enhance the model’s generalization ability and robustness for primary training, we employed a
systematic data augmentation strategy on the AD (0.5 m) and SF (1.0 m) training and validation
subsets. The augmentation process primarily involves a random remove function, which applies
random spatial cutouts and scaling factors to the original samples. Specifically, this technique first
identifies the spatial coordinates of the shoreline protection segments and then occludes small, square
regions around a random subset of them in the input maps. This process simulates scenarios with
imperfect or missing data, forcing the model to learn more robust contextual features rather than
memorizing the impact of any single protection segment. We create distinct yet related variants of
the original dataset by systematically applying these transformations multiple times (24 x for AD
and 10x for SF). Compared to the original sparse dataset, this strategy produces a richer dataset for
primary training, comprising 2,304 training samples and 240 validation samples for AD, along with
2,250 training samples and 240 validation samples for SF.

The fine-tuning datasets for SF (0.5 m and 1.5 m SLR) consist of 30 protection scenarios where one
OLU was protected at a time. For evaluation, 20% of the data (6 samples) was reserved, while the
remaining 80% (24 samples) was used for fine-tuning and validation.

B Details of the Proposed Methodology

B.1 CASPIAN-v2 Architecture

This section provides a detailed technical implementation of the CASPIAN-v2 architecture, expanding
on the conceptual overview presented in Section 4 of the main text. The block diagram of the



CASPIAN-v2 model, as illustrated in Figure 4, comprises three primary stages: encoder, bottleneck,
and decoder.
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Figure 4: The CASPIAN-v2 model architecture. The encoder extracts hierarchical features using FE
blocks; the bottleneck employs MARX blocks to capture high-level representations; and the decoder
reconstructs outputs using FR and SEE blocks. Different colors show separate layer operations.

B.1.1 Encoder Stage

The encoder stage of the CASPIAN-v2 model is designed to extract hierarchical features by pro-
gressively reducing the spatial dimensions of the input grid while increasing the depth of the feature
maps. This process enables the network to capture multi-scale patterns essential for accurate flood
prediction.

The model accepts two inputs: an input grid I € RH*Wx*1 where H and W are the spatial
dimensions, and a scalar SLR value denoted as S. Since the SLR input S contains global information
affecting the entire spatial domain, it is integrated directly into the decoder part of the network. The
encoder stage contains a series of feature extraction (FE) blocks, allowing the model to capture
both local features, such as specific inundation points and their immediate surroundings, and global
patterns, including the overall spatial distribution of protected and unprotected areas.

First, the preprocessed input grid I is processed through a series of depthwise separable convolutional
layers to reduce the spatial dimensions and extract complex features. At each depth level £k = 1 to K,
where K is the total depth of the encoder, the feature map X, undergoes several transformations.
First, a 2 x 2 depthwise convolution with stride 2 is applied to the input feature map Xy, capturing
spatial correlations within each channel independently while significantly reducing computational
cost compared to standard convolutions. Following that, a single stride 1 x 1 pointwise convolution is
used to combine the outputs across channels, allowing for feature interaction and increasing the depth
of the feature map. In addition, 2 X 2 pooling operations with stride 2 are applied at each depth level
k. The pooled features from the previous layer are also concatenated with the output of the pointwise
convolution, enhancing the feature representation by merging hierarchical features from different
scales. This enables the network to capture intricate patterns by combining information in different
resolutions, which is essential to interpret how local features contribute to the overall risk of flooding.

We used residual connections to maintain key spatial data and increase network depth. Incorporating
a modified X}, into the concatenated output mitigates gradient vanishing and improves identity
mapping learning. These connections preserve crucial features of the early layer and streamline
network training.

This process is repeated for each FE block in the encoder, leading to a gradual reduction in the spatial
dimensions of the feature maps. At each FE block k, the spatial dimensions are reduced by factor 2,
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so the resulting feature maps have dimensions 2% X 2% x F', where F' is the number of channels after

concatenation. Such a progressive decrease in the spatial dimensions allows the network to capture
more significant receptive fields, collecting information from more extensive regions of the input
grid, which is critical for the simulated spread of inundation under various SLR situations. The input
grid I, by the end of the encoder stage, transforms into dense feature maps Xepe € REXW'XF that
capture both local and global data patterns, serving as input to the next stage.

B.1.2 Bottleneck Stage

The bottleneck stage of the CASPIAN-v2 comprises a novel block called the multi-attention ResNeXt
(MARX) block to enhance the ability of the model to focus on the most informative parts of the data.
It integrates ResNeXt blocks [28] with the convolutional block attention module (CBAM) [29]. The
output feature maps from the encoder (X, € R "XW'XF) gerve as the input to the bottleneck stage.
The MARX Blocks process feature maps through a sequence of operations, starting with a ResNeXt
block, followed by a CBAM module, and concluding with an additional ResNeXt block. In the first
ResNeXt block, the input feature map is divided into G groups, and group-specific convolutions are
applied using 1 x 1 and 3 x 3 kernels, as expressed in Eq. (1):

G
Xr1 =0 (Xenc +o (Z Wg * Xenc,g + bg>> , ()

g=1

where Xep is the input feature map, W, and b, are the weights and biases for the g-th group, ®
denotes the grouped convolution operation, and ¢ is the activation function. Xg; € 2% X 2% x Fyis
the output feature map of the first ResNeXt block, where K is the total depth of the encoder stage,
and F, is the number of channels determined by multiplying the cardinality C with the bottleneck
width B (F; = C x B).

Next, to refine the feature maps and enable the model to focus on the most informative aspects of
the data, we integrated the CBAM principle within the MARX block. The CBAM enhances the
representational power of the model by sequentially applying attention mechanisms along both the
channel and spatial dimensions. In the channel attention module, inter-channel relationships are
captured by computing a channel attention map M, € RY*1*¥ which reweights the channels of the
feature map, as expressed in Eq. (2):

M, =30 (We -0 (Wei - 2)), 2

where W, € R¥F "XF and W, € RFXF " are the weights of the fully connected layers, F'" is a
reduction ratio parameter, o denotes the activation function, and § is the sigmoid function. The
aggregated channel descriptor z € R¥" is obtained by applying global average pooling over the spatial
dimensions.

H W'

2 = g D O X)), 3)

i=1 j=1

where Xg;. ¢ is the f-th channel of the feature map Xg;. The channel attention map M, is then
applied to the feature map via element-wise multiplication ( X§, = M, ® Xg;). This operation
emphasizes channels that are more informative for predicting inundation patterns influenced by SLR
and protection measures. Following that, a spatial attention map M, € RY XWIx1 g computed by
initially aggregating the feature map across the channel dimension using the average pooling, as
expressed in Eq. (4):

1 F
f=1

where q € R? W' are the aggregated feature maps. Afterward, a 7 x 7 convolution is performed
to extract intricate inundation patterns. Next, the spatial attention map M is applied to the refined
channel feature map (Xcpam = M © X5, ), allowing the model to concentrate on the spatial regions
that are most pertinent for predicting flood inundation, such as areas with high vulnerability due to
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low elevation or insufficient protection. Finally, the output of the CBAM module, X pam, is processed
through a second ResNeXt block to better capture the representations of complex features.

G
X =0 (cham +o (Z W, % Xepam,g + b;>> : )
g=1

where Xy is the output feature map of the MARX Block, and W;, bfq are the weights and biases
for the g-th group in the second ResNeXt block. The MARX blocks allow the CASPIAN-v2
model to generalize across complex datasets by adaptively concentrating on the most informative
features in both channel and spatial dimensions. By the end of the bottleneck stage, the feature
maps (Xpn € R¥ XW'XF) are transformed into rich, high-level representations that capture key
information about the candidate input scenario. These refined features serve as a strong foundation
for the decoder stage, where they are progressively upsampled and combined with the SLR scalar S
to reconstruct the spatial resolution of the input grid.

B.1.3 Decoder Stage

The decoder stage in the proposed CASPIAN-v2 model employs a series of feature reconstruction
(FR) blocks to progressively upsample the feature maps. After the bottleneck, the refined feature
maps X, € RY XWIXE serve as input to the decoder. The main goal is to restore the near-original
spatial dimensions H x W. At each depth level k, the decoder up-samples feature maps by a factor

of 2 through transpose convolution, producing Xgec € R2F 7~ . Upsampled maps are then
concatenated to corresponding encoder outputs through skip connections, ensuring critical spatial
details lost during downsampling are maintained.

W/
oh=1 XF

To further strengthen the focus of the decoder on critical spatial regions and reflect SLR effects, we
propose a novel SLR-enhanced encoding (SEE) block. It learns dynamic weighting from the SLR
input to adjust decoder features. In the SEE block, the pooled feature maps of each encoder level are
aggregated and passed through dense layers to generate spatial weighting coefficients, as expressed
in Eq. (6).

Wspk = 0 (Wsp,k F (AP (Xenc,k)) + bsp,k) ) (6)

where Xenc, is the k-th channel of the encoder feature map, AP denotes average pooling, F
denotes the flattening operation, W, ;. is weight matrix, and byp . is bias term. Simultaneously,
the SLR scalar input S is processed through a dense layer to produce wgir. The spatial and SLR
features are then concatenated to form weomp, = [wsp, k; Wsir], which is passed through another dense
layer with sigmoid activation to produce the final weighting coefficients Wy . These weighting
coefficients are then reshaped and applied to the decoder feature map via element-wise multiplication
X(’jec, i = Xdec,k © Weee i, Where Xec 1 is the decoder feature map at the corresponding depth level,
and © denotes element-wise multiplication. This configuration of the SEE Block allows the model to
adaptively weigh the decoder features based on both spatial information from the encoder and the
global influence of SLR, enhancing the model’s ability to predict flood inundation patterns under
varying SLR scenarios.

At the output of the final FR block, a convolutional operation is applied to produce a preliminary
output grid Ocony € RT*WX1 To further enhance this output, the model computes the sum of the
features across the channels of the last decoder feature map X, x € RAXWXFE Moreover, the SLR

input S is again incorporated at this stage by processing through a dense layer and then applying to
the summed features via element-wise multiplication, as expressed in Eq. (7):

F
Xsum = Z Xé(eJ:’)K Owgyr |, (7)
f=1

where X;(i,)K is the f-th channel of the feature map. Finally, the enhanced summed features are

added to the preliminary output grid before applying the activation function.
O=0 (Oconv + Xsum) , (8)

where O € RH*Wx1 jg the final output grid representing the predicted flood inundation map, and &
is the activation function. This allows extra information from the decoder feature maps by summing
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across the channels, thereby enriching the final output with more comprehensive spatial features. The
grid O reflects the likelihood or extent of flooding at each spatial point, considering both the local
features learned by the encoder and the broader SLR effects used in the decoder. This integrated
design helps the CASPIAN-v2 model generate accurate and robust flood inundation maps, which are
crucial for planning and mitigating coastal regions impacted by SLR.

B.2 Loss Function

Predicting PWL under different SLR scenarios is challenging due to outliers and the need to balance
error sensitivity across multiple regions. To tackle these issues, we introduce a hybrid loss function
that combines Huber [30], Log-Cosh [31], and Quantile [32] losses in a weighted setup. The Huber
loss Ly, aims to robustly minimize small prediction errors while limiting the impact of outliers, and it
uses a threshold & to manage the sensitivity of the error. The L;, for each sample 7 is computed as
expressed in Eq. (9):

Lns = {200 = 90)° if ypi = yeil <9, )
! 8 |Ypi — Yri| — 36 otherwise

where y;; and y, ; represent the actual and estimated PWL values. We set § within the range of
0.3 and 0.7, which is dynamically determined to balance sensitivity and robustness. Moreover,
we integrate Log-Cosh loss (L.qsn) to smooth gradients in regions with large variations, helping to
maintain prediction stability in different areas affected by SLR. The L, is expressed as in Eq. (10):

Lcosh,i - log (COSh(yp,i - ytz)) 5 (10)

In addition, the quantile loss L, differentiates errors by assigning distinct penalties to underestimation
and overestimation, dictated by a quantile parameter 7 = 0.75. This loss dynamically adjusts to
minimize quantile-specific errors, calculated as in Eq. (11):

L= JT (Up,i — i) ifypi > Yo, (11
o (1 —7) - (yes — ypi) otherwise

To achieve an optimal balance, we linearly combine the three loss components into a comprehensive
hybrid loss function Ly, weighted by empirically tuned coefficients y,, o, o The final loss is
expressed as in Eq. (12):

Leustom = @p - Ly + 0tc - Leosh + Qg - Lq7 (12)

where oy, o, ag > 0 and oy, + ¢ + g = 1. These weights are empirically determined to optimize
predictive performance. By integrating these components, our custom hybrid loss function balances
error sensitivity, maintains robustness to outliers, and addresses asymmetric error distributions,
enhancing the model’s predictive accuracy for PWL under varying SLR scenarios.

C Details of Experimental Setup

This section outlines the parameters employed to train, validate, and evaluate the proposed DL model.
We detail the CASPIAN-v2 optimization and training protocol, baseline models, and evaluation
metrics used to validate and compare the performance of the CASPIAN-v2 model.

C.1 Model Optimization and Training Protocol

The CASPIAN-v2 model was implemented in Python 3.10 using TensorFlow 2.10.1 and was trained
on a 64-bit Windows operating system. We utilized an Intel Core 19-14900K (3.20 GHz) machine
with 64 GB of RAM and an NVIDIA GeForce RTX 4090 GPU. The CASPIAN-v2 architecture
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(shown in Figure 4) was refined through extensive ablation studies, which evaluated the impact of
loss functions, MARX blocks, the SEE block, and SLR integration. The model was trained using
the proposed hybrid loss function. The training process lasted for 200 epochs with a batch size of 2.
The remaining hyperparameters were fine-tuned using Bayesian Optimization and Random Search to
ensure optimal performance.

C.2 Baseline Models

We assessed the performance of CASPIAN-v2 model for coastal flood prediction against several SOTA
ML and DL techniques. We considered conventional ML methods, including the Naive model, which
utilizes a dummy regressor to forecast the mean value of the target variable to serve as a basic reference
for assessing more advanced models. Additionally, we trained random forest, linear regression,
extreme gradient boosting, support vector regression, lasso regression with polynomial features, and
kriging with principal component analysis to establish an ML benchmark. The hyperparameters for
training these models were optimized through a combination of Bayesian optimization and random
search methods, allowing for efficient exploration of the parameter space while preventing overfitting
on the validation set.

In addition to traditional ML baselines, we tested several DL models adapted to the flood prediction
task. These include a simple feed-forward neural network architecture, specifically a multi-layer
perceptron (MLP), and compact convolutional transformers (CCT) [33], which serve as baseline 1D
DL models. Furthermore, we evaluated several 2D DL models, including Attention-Unet [34], and
Swin-Unet [35]. To adapt these models for flood prediction, we replaced their segmentation heads
with a 1 X 1 convolution layer followed by activation to output real-valued flood depth predictions.
We evaluated two versions of Attention-Unet: one with randomly initialized weights and another
(denoted as Atten-Unet*) with an encoder pre-trained on ImageNet [36], leveraging transfer learning
to improve performance in low-data scenarios. The final DL baseline was CASPIAN, which we
previously proposed in [11]. All DL models were trained using the Adam optimizer and the proposed
hybrid loss function (Lcyseom)- Additionally, each model was trained for 200 epochs with a batch size
of 2, and early stopping based on validation loss. The remaining training hyperparameters for each
model were tuned using Bayesian Optimization and Random Search with the Keras Tuner to ensure a
fair comparison.

C.3 Evaluation Metrics

To evaluate the performance of our model in predicting PWL values, we employ several metrics that
capture various aspects of predictive accuracy and robustness.

* Average relative total absolute error (ARTAE): It quantifies the relative error between the predicted
y{f and true values y* by measuring the normalized L difference:

F—yrlh

N
1 ”yt
ARTAE £ — 13
P e ()

where IV denotes the total data samples.

* Average root mean square error (ARMSE): It captures the root mean square error for each sample,
as expressed:

N dy

1 1 o= (W =yl )?
ARMSE £ — — ) IRt TRt 14
NENGL L 1

where d,, indicates the dimensionality of each sample.
* Average mean absolute error (AMAE): It provides an average absolute error measure over samples.
Unlike ARMSE, it does not severely penalize larger deviations. The AMAE is calculated as:

dy
AMAE 2 L A
NEZ oL

15)
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» Coefficient of determination (R?): The R? measures the proportion of variance explained by the
model, indicating how well the predictions approximate the true values. It is computed as:

dy

2a 1 al 21'21(1/51‘ _95,1)2

R = — g - = - - (16)
N 2ol —U)?

k=1
where 7 is the mean of the true values for the k-th sample.

 Threshold exceedance metric (§ > A): This metric represents the fraction of cases where the
prediction error exceeds a specified threshold A, which is crucial for applications sensitive to large
errors. It is defined as:

N g ok
5>Aﬁ]bz|{z'|yt,z

k=1

—ypl > Ai € [dy]}]

a, a7)

* Non-inundated prediction accuracy (Acc[0]): The Acc[0] measures the fraction of instances where
the true values are zero (non-inundated points), and the predictions accurately reflect this. This is
particularly relevant for sparse targets. It is computed as:

W LK iyl =0ied
ACC[O]:NZ |{Z Yy, dyZ [y]}| (18)
k=1

D Details of the Results and Comparison

In this section, we evaluate the performance of CASPIAN-v2 model through quantitative and
qualitative analyses.

D.1 Quantitative Results
D.1.1 Performance Metrics on Test Set

We first report the performance of CASPIAN-v2 on the test set, as shown in Table 3. For AD
data, the model achieves an AMAE of 0.0586, ARMSE of 0.4079, and a high average R? score of
0.9556, indicating excellent explanatory power. The ARTAE of 4.2793% and low error percentages
(6 > 0.5%: 1.02% and § > 0.1%: 4.37%) highlight higher precision in accurately predicting flood
inundation levels. Similarly for SF, the model achieves an AMAE of 0.0320, ARMSE of 0.2094, and
an average R? score of 0.9214. While the ARTAE is higher at 8.8129%, the model maintains high
accuracy metrics with an Acc[0] of 99.76% compared to 99.04% in AD.

On the combined dataset, CASPIAN-v2 performs consistently well with an AMAE of 0.0453,
ARMSE of 0.3087, and an average R? score of 0.9385. The combined ARTAE of 6.5461% and low
error percentages (0 > 0.5: 0.89% and § > 0.1: 3.55%) demonstrate balanced performance across
regions. The high Acc[0] of 99.39% further underscores the reliability of the model in accurately
predicting coastal inundation.

Table 3: Evaluation of CASPIAN-v2 on test set. | indicates that lower values are
better, and 1 indicates that higher values are better.

Dataset |MAE | RMSE | RTAE | § > 0.5 6> 0.1] R?*Score?t Acc[0]}
AD 0.0586 0.4079 4.2793 1.02% 4.37% 0.9556 99.04%
SF 0.0320 0.2094  8.8129 0.75% 2.72% 0.9214 99.76%

Combined | 0.0453 0.3087 6.5461 0.89% 3.55% 0.9385 99.39%

D.1.2 Performance Metrics on Holdout Set

In this section, we present CASPIAN-v2 performance on the holdout set. The results are reported in
Table 4, where it can be observed that the model achieves an AMAE of 0.0792, an ARMSE of 0.4871,
and an average R? score of 0.9525 for AD. Furthermore, the small percentages of errors (§ > 0.5:
1.29% and 6 > 0.1: 5.48%) underscore its accuracy in predicting flood inundation levels.
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Similarly, for SF, CASPIAN-v2 achieves an AMAE of 0.0317, an ARMSE of 0.2259, and an average
R? score of 0.9694. Compared to AD, the ARTAE of 4.0009% indicates slightly more predictions that
have larger relative errors. However, with Acc[0] of 99.64%, the model achieves better non-inundated
prediction accuracy compared to 99.07% in AD-Holdout.

Overall, CASPIAN-v2 achieves an AMAE of 0.0512, an ARMSE of 0.3331, and an average R? score
of 0.9625 on the aggregated holdout dataset. The ARTAE of 3.7167% and small error percentages
(6 > 0.5: 1.04% and § > 0.1: 4.17%) signify consistent performance in both regions. The higher
Acc[0] of 99.41% further confirms its reliability in predicting flood inundation across diverse and
challenging shoreline scenarios.

Table 4: Evaluation of CASPIAN-v2 on holdout set.
Dataset MAE | RMSE | RTAE| 6§ >0.5] 6> 0.1 R?Score? Acc[0]t
AD - Holdout | 0.0792  0.4871  3.3081 1.29% 5.48% 0.9525 99.07%
SF - Holdout | 0.0317 0.2259 4.0009  0.86% 3.26% 0.9694 99.64%
Combined | 0.0512 0.3331 3.7167 1.04% 4.17% 0.9625 99.41%

D.1.3 Performance Benchmarking against SOTA Methods

To comprehensively evaluate the performance of CASPIAN-v2, we benchmarked it against a suite of
SOTA traditional ML and DL models. The selection and implementation details for these baseline
models are described in Section C.2. This section presents a detailed comparison the prediction
performance across all models, with the full results presented in Table 5. The analysis is broken
down by model class, first comparing against traditional ML methods, and then against other DL
architectures.

Comparison with Machine Learning Models:

In this section, we compare the performance of CASPIAN-v2 against various traditional ML models
for flood prediction, as shown in Table 5. The Naive model shows high errors with an AMAE of
1.5343, ARMSE of 3.5444, and an average R? score of 0.5450. Among traditional approaches,
linear regression reduces errors significantly, achieving an AMAE of 0.1272, ARMSE of 0.1946,
and an average R? score of 0.9464. The lasso with polynomial model further improves performance,
giving an AMAE of 0.0937, ARMSE of 0.1202, and the highest average R? score of 0.9618 among
traditional ML models.

Compared to the best traditional model (lasso with polynomial), CASPIAN-v2 reduces the AMAE by
51.65% (from 0.0937 to 0.0453). However, CASPIAN-v2 has a higher ARMSE of 0.3087 compared
to 0.1202, indicating it minimizes mean errors effectively but may experience larger individual
prediction errors. Despite this, CASPIAN-v2 outperforms traditional models across multiple metrics,
leveraging DL and multi-dimensional data integration to achieve superior accuracy in flood prediction.

This trend is even more pronounced in the spatial accuracy results. While the lasso model achieved a
DSC of 0.6438, CASPIAN-v2 scored 0.8437, representing a 31.05% improvement. This significant
gap underscores the inherent limitations of traditional ML models in capturing the complex geometric
shape of flood events, a task for which our deep learning architecture is better suited.

Comparison with Deep Learning Models:

Existing 1D and 2D DL models show varied performance, as reported in Table 5. The CCT model
achieves an AMAE of 0.9064, an ARMSE of 2.3292, and an average R? score of 0.6649, indicating
moderate predictive capabilities. Atten-Unet and its variant Atten-Unet* improve performance with
AMAE values of 0.1061 and 0.1032 and average R? scores of 0.9195 and 0.9210, respectively.
Swin-Unet achieves further improvements, reducing the AMAE to 0.0629 and attaining an average
R? score of 0.9514, reflecting its effectiveness in capturing spatial dependencies.

Compared to the second-best DL model, CASPIAN-v2 reduces the AMAE by 19.96% (from 0.0566
to 0.0453) and achieves an exceptional average Acc[0] of 99.39%, surpassing CASPIAN’s 98.84%.
These results highlight superior accuracy and robust generalization capabilities of CASPIAN-v2.

In terms of spatial fitness, CASPIAN-v2 (with DSC of 0.8437) also demonstrates a clear advantage
over the best-performing DL baseline, CASPIAN (0.8261), representing a 2.13% improvement in

16



Table 5: A comprehensive performance comparison between our proposed CASPIAN-v2 and
state-of-the-art models, grouped into a baseline physics-based simulator (Delft3D), traditional ML,
and DL approaches. Prediction accuracy is evaluated using eight standard metrics, where arrows
indicate the desired direction (1 for higher is better, | for lower is better). Computational efficiency
is assessed by three key indicators: the total number of trainable parameters (M = millions), the total
training time (TT), and the average inference time (IT) per sample. The physics-based simulations,
which provide the ground truth data, are included for reference. The top-performing result for each
metric is highlighted in red, and the second-best is highlighted in blue.

Type Model Prediction Accuracy Computational Efficiency
MAE| RMSE | RTAE| 6 >0.5] 6> 0.1] R21 Acc[0]+ DSC1|Param| TT| IT|
Simulator AD Pipeline Served as the ground truth i i 71-73h
SF Pipeline® - - 35-60h
Naive 153 354 174606 7492%  80.11% 054 31.01% 038 - 62 0.15s
RF 054 073 26495 3677%  72.20% 079 34.19% 041 - 75 0.18s
Linear 012 019 6498  7.87%  14.03% 094 59.28%  0.62 - 655 0.16s
(IlvfIL)) XGBoost | 025 024 16416 1627%  49.88% 093 44.10% 047 - 198 021s
SVR 020 024 7231 924%  41.17% 092 4546 048 - 79 0.19s
LassoPoly | 0.09 0.2  28.15  447%  1504% 096 55.78% 0.64 - 725 0.17s
Kriging 010 024 3990  522%  11.59% 094 62.88% 0.63 - 765 0.18s
DL MLP 064 272 52417 32.82%  41.94% 065 3691% 043 | 0.0IM 14h  5.03s
1-D) cCcT 090 232 84354 48.08%  64.63% 066 34.01% 042 | 11.0SM 18h  0.26s
Atten-Unet | 0.10 037  11.82  3.14%  1670% 091 9526% 073 | 12.07M 46h  0.24s
Atten-Unet* | 0.10 036  11.65  331%  1562% 092 9499% 074 | 12.07M 47h  027s
DL Swin-Unet | 006 027 672  147%  12.94% 095 98.10% 0.80 | 829M 26h  0.24s
@2D) | CASPIAN | 005 036 5.85 101%  479% 092 98.84% 082 | 0.36M 22h  0.22s
Ours 004 030 654  0.89% 355% 093 99.39% 0.84 | 038M 22h  0.22s

* with pre-trained encoder on ImageNet [36].
T AD pipeline includes Delft3D + SWAN + post processing.
° AD pipeline includes Delft3D + post processing.

spatial accuracy. Taken together, these results highlight the superior accuracy and robust generaliza-
tion capabilities of CASPIAN-v2. The integration of advanced components such as the MARX and
SEE blocks, combined with an optimized Hybrid loss function, enables the effective modeling of
complex flood dynamics.

D.1.4 Computational Efficiency Analysis

A primary motivation for this research is to overcome the significant computational burden of
physics-based hydrodynamic simulators. The final three columns of Table 5 provide a comprehensive
comparison of the computational efficiency of all evaluated models.

As expected, the traditional ML models are the fastest to train, typically requiring only a few minutes.
However, this speed comes at the cost of significantly lower prediction accuracy. Among the more
accurate DL models, CASPIAN-v2 demonstrates a highly favorable balance of performance and
efficiency. With only 0.38 million parameters, it is one of the most lightweight 2D models, comparable
in size to the original CASPIAN (0.36M) and substantially smaller than transformer-based models
like Swin-Unet (8.29M) or other U-Net variants (12.07M). Its training time (22 hours) and inference
time (0.22s per scenario) are also highly competitive within this high-performing group.

The most critical comparison, however, is against the physics-based simulator. Generating a single
flood scenario is an exceptionally demanding task. For Abu Dhabi, a full simulation requires 71
to 73 hours of elapsed runtime on high-performance computing infrastructure due to the coupling
of Delft3D and SWAN models and extensive post-processing. For San Francisco Bay, where the
simulation was less complex, the process still required a substantial 3.5 to 6.0 hours (as detailed in
Section A.1). Extrapolating these figures, simulating our full test set of 72 scenarios (36 for each
region) would demand approximately 2,763 hours (nearly 115 days) of continuous computation. In
stark contrast, CASPIAN-v2 can predict the outcomes for all 72 scenarios in just under 16 seconds.
This represents a monumental reduction in computational time, transforming a months-long endeavor
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into a near-instantaneous task and positioning CASPIAN-v2 as a practical and scalable tool for
real-world coastal planning.

Table 6: CASPIAN-v2 generalizability evaluation using different SLR data.
Dataset (SLR) MAE| RMSE | RTAE| 6§ >05] §>0.1] R?Scoret Acc[0] 1
SF - Generalizability (0.5 m) | 0.0626  0.2996  6.4240 1.89% 7.79% 0.9336 97.99%
SF- Generalizability (1.5 m) | 0.1005 0.4565 4.3961 1.97% 14.51% 0.9196 98.23%
AD - Holdout (0.5 m) 0.0567 0.2274 2.5225 0.53% 17.87% 0.9901 99.18%
SF - Holdout (1.0 m) 0.0433  0.2318 4.6277  0.79% 9.61% 0.9685 99.34%
Overall 0.0652 0.3040 4.5871 1.31% 12.07% 0.9520 98.69%

D.1.5 Numerical Assessment of Generalizability

This section reports the generalization performance of CASPIAN-v2 on unseen data. The model
was fine-tuned using new SF data corresponding to 0.5 m and 1.5 m SLR depths, encompassing 30
protection scenarios where one OLU was protected at a time (more details in Supplementary Material
Section S5). For evaluation, 20% of the data (6 samples) was reserved, while the remaining 80% (24
samples) was used for fine-tuning and validation. Fine-tuning spanned 100 epochs with a progressive
gradual recall approach, mixing the new data with the AD and SF holdout data in a 20:80 test/train
ratio. The training set began with 70% of the AD and SF holdout set combined with 30% of the new
data, gradually increasing to 70% by the end of training.

The results in Table 6 demonstrate strong generalization by CASPIAN-v2 across SLR scenarios. For
SF 0.5 m data, the model achieved an AMAE of 0.0626, ARMSE of 0.2996, and average R2 score of
0.9336. An ARTAE of 6.4240% and low error percentages (6 > 0.5: 1.89% and § > 0.1: 7.79%)
highlight its precision. For SF 1.5 m data, the model showed slightly suboptimal performance with
an AMAE of 0.1005, ARMSE of 0.4565, and average R? score of 0.9196. The ARTAE of 4.3961%
indicates balanced performance, with an average Acc[0] of 98.23% compared to 97.99% for 0.5 m
data.

When retaining existing knowledge, CASPIAN-v2 achieved an AMAE of 0.0567 and ARMSE of
0.2274 on the AD holdout set for 0.5 m SLR, with an average R? score of 0.9901. The ARTAE of
2.5225% and low error percentages ( > 0.5: 0.53% and § > 0.1: 17.87%) emphasize its precision.
For the SF holdout set at 1.0 m SLR, the model achieved an AMAE of 0.0433, ARMSE of 0.2318,
and average R? score of 0.9685. The ARTAE of 4.6277% and error percentages (5 > 0.5: 0.79%
and 0 > 0.1: 9.61%) reflect its ability to balance low absolute and relative errors, with an Acc[0] of
99.34%.

Overall, the model achieved an AMAE of 0.0652, an ARMSE of 0.3040, and an average R? score of
0.9520, revealing robust generalization abilities of the model across various SLR settings. Further, the
model achieved an ARTAE of 4.5871% and low error percentages (6 > 0.5%: 1.31% and § > 0.1%:
12.07%), with a high Acc[0] of 98.69%. These findings highlight the ability of the CASPIAN-v2
model to effectively generalize to new and previously unseen scenarios with minor fine-tuning,
making it a reliable tool for real-world inundation prediction.

D.2 Qualitative Results
D.2.1 Visual Performance on Test Set

In this section, we provide a qualitative assessment of the performance of CASPIAN-v2 on the
test set. Figure 5 presents two randomly selected scenarios for the AD and SF regions, where it
can be observed that the predicted inundation values of the proposed model closely align with the
corresponding ground truth values. In single unprotected OLU scenarios (rows 1 and 3), the model
accurately captures localized flooding effects, showing sensitivity to minor protection configuration
changes. Similarly, CASPIAN-v2 effectively handles the increased complexity of mixed OLU
protection statuses (rows 2 and 4). These results highlight the robustness of the model in generalizing
across diverse regions and protection patterns. Figure 5(c) shows the absolute error maps, where it
can be observed that the CASPIAN-v2 model produced minimal errors, with deviations occurring
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mainly in areas with sharp transitions in flood depths. However, these small variations minimally
affect the overall prediction accuracy.

To illustrate the local impact of the protection measures on flood dynamics, zoomed-in insets are
provided for specific OLUs. For instance, the first inset for AD highlights how inundation patterns are
directly controlled by the protection status of the nearest OLU. When OLU-17 is protected, the area
behind it remains largely dry, whereas significant flooding occurs inland of the unprotected OLU-14.

D.2.2 Visual Performance on Holdout Set

In this section, we demonstrate the performance of CASPIAN-v2 using a holdout set composed
of particularly challenging coastal protection scenarios. Figure 6 showcases the performance of
the model on two challenging configurations from the holdout set, which was specifically designed
to test generalization across complex protection scenarios. These scenarios feature intricate mixes
of protected and unprotected OLUs, creating sharp inundation boundaries where flooded and non-
flooded regions meet. CASPIAN-v2 demonstrates high fidelity in these cases, accurately capturing
these abrupt changes in local flood behavior. For instance, it correctly captures the inundation
dynamics when one side of the SF bay is protected and the other is not (last row of Figure 6).

The strong performance of the model here is particularly noteworthy given that it was trained on only
a small subset of the thousands of possible protection combinations (2", where n is the number of
OLUs). This success on unseen, complex configurations indicates that CASPIAN-v2 is not merely
memorizing training data but is learning the underlying spatial logic of how flood defenses influence
inundation patterns. This affirms its robustness and reliability for real-world application.

D.2.3 Visual Comparison with SOTA Methods

We qualitatively evaluated the performance of the proposed CASPIAN-v2 by visually comparing its
prediction errors with those of key SOTA baselines. Figure 7 presents this analysis for representative
scenarios in both Abu Dhabi and San Francisco. Figure 7(b) shows the absolute error map for our
proposed CASPIAN-v2 model, demonstrating that errors are generally low and confined to complex
hydraulic transition zones. The key insights, however, come from the error difference maps (Figure 7
(c-f)), which directly compare the spatial accuracy of CASPIAN-v2 to each baseline. In these
maps, green areas highlight regions where CASPIAN-v2 is more accurate, while red indicates where
the baseline had a lower error, and transparent areas denote regions where both models performed
similarly.

Compared to the Lasso with polynomial features Figure 7(c) and MLP Figure 7(d) baselines,
CASPIAN-v2 offers a dramatic improvement, with vast green areas indicating its superior abil-
ity to capture the fundamental flood patterns that these simpler models miss. The comparison with
the more advanced Swin-Unet Figure 7(e) and the original CASPIAN Figure 7(f) models is also
convincing. While these models are more competitive, the difference maps still show a clear and
consistent advantage for CASPIAN-v2, which successfully reduces errors in many of the most deeply
inundated and complex areas.

Moreover, Figure 8 visualizes the flood extents predicted by CASPIAN-v2 against the best-performing
ML and DL baseline model. The map breaks down the predictions into correctly matched areas
(green), over-predicted areas (orange), and under-predicted areas (purple). The visualization reveals
that while the baseline models produce a more fragmented prediction with significant patches of both
over- and under-prediction, the output of the proposed CASPIAN-v2 model aligns much more closely
with the ground truth. Its predicted flood extent is more coherent and captures the true inundation
boundaries with far fewer spatial errors. These qualitative comparisons align with the quantitative
results in Table 5, highlighting the ability of the proposed model to achieve higher accuracy and
visually superior predictions.

D.2.4 Visual Assessment of Generalizability

We next evaluate the generalizability of CASPIAN-v2 under different environmental conditions by
fine-tuning the model on two additional SLR data of 0.5 m and 1.5 m. Figure 9 shows the prediction
results, illustrating that while the fine-tuned model exhibits some localized discrepancies (Figure
9(c)), these deviations remain modest given the minimal training data and limited fine-tuning epochs.
In the 0.5 m SLR scenario, the model yields relatively lower absolute errors in predicting flood
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Figure 5: Evaluation of CASPIAN-v2 on the test datasets. (a) Ground truth inundation maps for
representative AD and SF scenarios. (b) Predicted inundation values. (c) Absolute error distributions
of predicted inundation values. Darker shades of blue indicate higher absolute errors, ranging from
near 0% to greater than 25%. The magenta insets provide zoomed-in views of specific OLUs to
illustrate the effect of protection measures. For instance, the inundation is shown to be minimal inland
of the protected OLU-17 in AD, whereas significant flooding occurs near the unprotected OLU-20, a
dynamic that the model precisely captures.

20



— Protected
Unprotected

— Pprotected owas — Protected
Unprotected Unprotected

2 ) oLu-2
b

o
24.7 ./iﬂ_ %

S

S

PWL Intensity (meters above sea level)

Latitude

PWL Intensity (meters above sea level)

Abu Dhabi
11111110000001111

(=13

= s15%
- 1525%
7 -—25%
Ll L1, s [ B e = =
54, 8 4.4 54.6 543 54.4 54.6 54.8
Longitude Longitude Longitude
24, 24.9 24.9

\E/‘

S

—— Protected ow-1a —— Protected ow1s | — Protected oLu-1e.
Unprotected Unprotected R . Unpratected

. owas 5 o owas PR ows

e oLu-15 .o OLU-15 .5 'a*

. N . o %

247 o 247 e 24.7
— — owaz
sl

ows
907 € owao

1

Latitude
Latitude

/"\f,
PWL Intensity (meters above sea level)

PWL Intensity (meters above sea level)

Abu Dhabi
00000001111111000

546 4 546
Longitude Longitude Longitude
— Protected — Protected 35 — Protected
. Unprotected s 33 < Unprotected ~ Unprotected
° .
=]
(=] 3.0
o
S 31 381
bl 25 =
- 2 :
- K} 258
9 o g 380 g
S = 208 ¢
- g H
@ 2 H
S — s 84 208
- g 03 3
€ g 29 5239 g
s 8% 3£ T
£ 83 15E 3 H
S z 152
c ] ]
58 » : s i
=] £ £
=] 103 S
- z 103
- & g
a2 s 376
-
—
- 05 0s
o -
ow
st etetaed A N = o ot ot Lo 5
1227 122.4 1222 -122.0 -121.8 ) 1227 1224 -122.2 -122.0 -121.8 ) 1227 1224 1222 -122.0 1218
Longitude Longitude Longitude
— Protected — rrotected | 40 — protected
Unprotected Unprotected
383 383
30
35
381 381
25 30
380 380

Latitude
©
Latitude

PWL Intensity (meters above sea level)

» »
PWL Intensity (meters above sea level)

San Francisco
111111100000000000001111111111

377 377 15
10

376 376 10
05

374 374

B H) ) - oo it
1227 1222 1227 1224 1222 1220 1218 1227 1224 1222 1220 1218
Longitude Longitude Longitude

(a) (b) ()

Figure 6: Evaluation of CASPIAN-v2 on the holdout datasets. (a) Ground truth inundation maps for
representative AD and SF scenarios. (b) Predicted inundation values. (c) Absolute error distributions
of predicted inundation values. Darker shades of blue indicate higher absolute errors, ranging from
near 0% to greater than 25%. The zoomed-in insets highlight fine-grained hydrodynamic effects. For
instance, the successful prevention of inundation by a protected OLU-2 in AD, versus the widespread
inland flooding resulting from an unprotected OLU-12 in SF.
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Figure 7: Qualitative comparison of CASPIAN-v2 with SOTA approaches in predicting coastal flood
inundation (a) Ground truth inundation maps for representative AD and SF scenarios. (b) Absolute
error map for our proposed CASPIAN-v2 model, with darker blue indicating higher error. (c-f) Error
difference maps comparing CASPIAN-v2 to key baselines. In these maps, green indicate regions
where CASPIAN-v2 is more accurate than the baseline, red areas show where the baseline performed
better, and transparent regions denote similar performance. The visualization clearly shows that
CASPIAN-v2 provides a substantial improvement over the (c) Lasso, (d) MLP, (e) Swin-Unet, and
(f) original CASPIAN models.

extents. By contrast, the 1.5 m scenario exhibits slightly higher errors, likely due to the increased
variability in PWL values. Nonetheless, the predictions generally align well with the ground truth
inundation patterns.

Overall, these findings underscore adaptability of the proposed model to evolving coastal conditions,
suggesting that with sufficient training data and appropriately tuned hyperparameters, the model can
maintain robust performance across a broad range of SLR scenarios.

E Holdout Dataset

To thoroughly evaluate the ability of our model to handle challenging conditions, we curated a
specialized holdout set for both the AD and SF regions. The scenarios below were chosen based on
the spatial configuration and proximity of the OLUs to ensure diverse yet demanding test cases for
the model. Tables 7 and 8 list all holdout scenarios for the AD and SF regions, respectively.

F Generalizability Dataset

We further evaluated generalizability of the CASPIAN-v2 model for unseen SLR conditions of 0.5 m
and 1.5 m. This dataset contains 32 protection scenarios for the SF region: 30 scenarios each with
exactly one protected OLU (and the remaining unprotected), a completely unprotected scenario, and
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GT Flood Map Lasso MLP Swin-Unet CASPIAN CASPIAN-v2

Figure 8: Visual comparison of spatial prediction accuracy for CASPIAN-v2 versus the top-
performing baseline model on a representative test case. Green indicates correctly predicted inundated
areas (true positives), orange indicates over-prediction (false positives), and purple indicates under-
prediction (false negatives). CASPIAN-v2 demonstrates a larger matched area and more coherent
flood boundaries.

a fully protected scenario. Table 9 lists these configurations in binary form, where 0 and 1 denote
unprotected and protected OLUSs, respectively.

G Model Interpretability and Uncertainty Quantification

To ensure CASPIAN-v2 is a trustworthy and practical tool for real-world decision-making, we
evaluated two critical aspects beyond standard accuracy metrics: model interpretability and predictive
uncertainty.

(0.5m)

(1.5m)

1224

1222 1222
Longitude Longitude

(a) (b)

Figure 9: Generalizability evaluation of CASPIAN-v2 fine-tuned for 0.5 m and 1.5 m SLR scenarios.
(a) Ground truth inundation maps. (b) Predicted inundation values. (c) Absolute error distributions of
predicted inundation values. Darker shades of blue indicate higher absolute errors, ranging from near
0% to greater than 25%.
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Table 7: Holdout set scenarios for the AD region. 1 indicates a protected OLU, while 0 denotes an

unprotected OLU.
AD Scenarios
00000001111110000  00000001111111000  00000011111000000  00000011111100000
00000111100000111  00000111110000011  00000111111100000  00001110000111000
00001111000011110  00001111111110000  00011000110001100  00011100011100011
00011111111111000 00110011001100110  OO111111111111100 01010101010101010
10101010101010101  11000000000000011  11001100110011001  11100000000000111
11100011100011100  11100111001110011  11110000000001111  11110000111100001
11110001111000111  11111000000011111  11111000001111100  11111000011111000
11111100000011111  11111100000111111  11111110000000111  11111110000001111

Table 8: Holdout set scenarios for the SF region. 1 indicates a protected OLU, while 0 denotes an

unprotected OLU.

SF Scenarios

000001111111111111100000000000
001000000110101010111001011111
001100111100101000111010000010
010011000111110100101010000000
010101100100010101111100010000
011000111100001111001101001110
011100010110000001100011001011
011110110100101000001001101110
100010101001111100110000100100
101001101011010011000100100110
101011000111111100110100001100
110000101001111101011001111101
110111100111100111000010100001
111001111010010011111010110010
111110001000010010110111011100
111111110000000011111111100000

000011111111100001111111010101
001001100011010100010000110101
001101101111101000010100001001
010100001011101110100101100001
011000001010000011110001111000
011010010000101000111110110100
011101000010011011111110001010
011111000111000101011010001001
100100000111111000001001001110
101010000010001101100100001010
101100111110011101010100111101
110001101101101111101101000110
110111110011100101000010001100
111100100010111111101100110100
111111100000000000001111111111

000111000111000111000111000111
001100110011001100110011001100
001111111010111000001001001100
010101010101010101010101010101
011000111000100011000001110010
011011000000011111011000100101
011101011000011111110101011001
100000000010100101001101111111
100101011111010111011101001100
101010101010101010101010101010
101110001110001001111001001001
110011001100110011001100110011
111000111000111000111000111000
111101111001000101111101100011
111111100011111000011110000000

G.1 Interpretability via Grad-CAM

To understand the model’s decision-making process, we employed Gradient-weighted Class Ac-
tivation Mapping (Grad-CAM). This technique produces heatmaps that highlight which regions
of the input the model focused on most when making a prediction. As shown in Figure 10, the
visualizations confirm that the model’s attention (warmer colors) aligns with physically relevant
and vulnerable areas, particularly the unprotected shoreline segments where inundation originates.
This alignment validates that the model is learning meaningful spatial logic rather than spurious
correlations, providing crucial transparency for stakeholders and planners.

G.2 Predictive Uncertainty Quantification

To measure the model’s confidence in its predictions, we implemented a deep ensemble method,
training five independent models and calculating the pixel-wise standard deviation of their outputs.
This standard deviation serves as a direct proxy for model uncertainty. The resulting maps in Figure

Table 9: Generalizability set scenarios for the SF region under 0.5 m and 1.5 m SLR. Each row contains

binary strings of length 30, with 1 indicating a protected OLU and 0 indicating an unprotected OLU.
SLR Generalizability Scenarios (SF)

000000000000000000000000000000
000000000000000000000000000100
000000000000000000000000100000
000000000000000000000100000000
000000000000000000100000000000
000000000000000100000000000000
000000000000100000000000000000
000000000100000000000000000000
000000100000000000000000000000
000100000000000000000000000000
100000000000000000000000000000

000000000000000000000000000001
000000000000000000000000001000
000000000000000000000001000000
000000000000000000001000000000
000000000000000001000000000000
000000000000001000000000000000
000000000001000000000000000000
000000001000000000000000000000
000001000000000000000000000000
001000000000000000000000000000
ITILTTTI111111111111111111111

000000000000000000000000000010
000000000000000000000000010000
000000000000000000000010000000
000000000000000000010000000000
000000000000000010000000000000
000000000000010000000000000000
000000000010000000000000000000
000000010000000000000000000000
000010000000000000000000000000
010000000000000000000000000000
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Figure 10: CASPIAN-v2 inundation prediction and interpretability for AD (top) and SF (bottom):
(a) Input maps, (b) Predicted inundation, (c) Grad-CAM visualizations highlighting model attention,
which aligns with unprotected and vulnerable areas.

11 reveal a strong spatial correlation between high predictive uncertainty (lighter colors) and high
prediction error. This indicates that the model effectively learns to identify regions where its own
predictions are less reliable. This self-awareness is invaluable for coastal planners, as it allows them
to trust high-certainty predictions while flagging high-uncertainty zones as areas requiring a greater
margin of safety or further detailed study.
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Figure 11: Predictive uncertainty maps for AD and SF scenarios. (a) Ground truth inundation. (b)
Absolute error of the ensemble mean prediction. (c) Pixel-wise predictive uncertainty, where lighter
colors indicate higher uncertainty and align with areas of higher error.
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