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Abstract

Increasing climate change and habitat loss are driving unprecedented shifts in
species distributions. Conservation professionals urgently need timely, high-
resolution predictions of biodiversity risks, especially in ecologically diverse re-
gions like Africa. We propose EcoCast, a spatio-temporal model designed for
continual biodiversity and climate risk forecasting. Utilizing multisource satellite
imagery, climate data, and citizen science occurrence records, EcoCast predicts
near-term (monthly to seasonal) shifts in species distributions through sequence-
based transformers that model spatio-temporal environmental dependencies. The
architecture is designed with support for continual learning to enable future op-
erational deployment with new data streams. Our pilot study in Africa shows
promising improvements in forecasting distributions of selected bird species com-
pared to a Random Forest baseline, highlighting EcoCast’s potential to inform
targeted conservation policies. By demonstrating an end-to-end pipeline from
multi-modal data ingestion to operational forecasting, EcoCast bridges the gap
between cutting-edge machine learning and biodiversity management, ultimately
guiding data-driven strategies for climate resilience and ecosystem conservation
throughout Africa.

1 Introduction

Climate change, in addition to widespread habitat degradation, is reshaping ecosystems across
continental Africa, a threat intensified by increasing temperatures, changing precipitation patterns,
and extreme weather events [1]. These changing environments, largely driven by anthropogenic
pressures, significantly affect biodiversity, particularly bird species that are highly sensitive to
environmental change and serve as early warning indicators of ecosystem health [2l]. However,
conservation professionals and policymakers often lack timely, fine-grained forecasts of changing
species distribution or habitat quality over time. Current methods often involve static Species
Distribution Models (SDMs) or climate risk assessments, which cannot keep pace with rapidly
changing environmental conditions. In Africa, the lack of up-to-date biodiversity data has made it
nearly impossible to track species declines or respond proactively [3].

We propose EcoCast, a spatio-temporal model tailored to the dynamic nature of African ecosystems.
EcoCast is designed to ingest real-time and near-real-time data, from satellite imagery and climate data
to citizen science observations, to generate frequently updated forecasts of shifting species distribution
and habitat quality changes. By piloting EcoCast in Africa, we illustrate how advanced machine
learning can directly inform local conservation efforts, such as identifying emerging biodiversity
hotspots, areas at risk of habitat loss, or assessing the ecological impact of infrastructure projects. In
doing so, we aim to demonstrate a new paradigm where a single large-scale model can serve as a
continuously improving “environmental model” for conservation decisions.

Tackling Climate Change with Machine Learning: workshop at NeurIPS 2025.



1.1 Key Contributions

We develop a large-scale pre-trained model that integrates multimodal data (satellite images, species
occurrences, climate variables) for biodiversity forecasting. To our knowledge, EcoCast is among
the first transformer-based models applied to ecological and climate risk data in Africa, learning
generalizable representations that transfer across species and regions. The architecture supports
continuous fine-tuning that can adapt to new data streams without catastrophic forgetting [4]], enabling
EcoCast to maintain high predictive performance in a changing environment. Furthermore, EcoCast
is designed to provide a user-friendly interface for conservation professionals, allowing stakeholders
to visualize model forecasts, explore scenarios, and contribute new observations.

2 Related Work

Over the years, machine learning techniques have been used to address key environmental challenges,
including forest cover change detection [3], crop-yield prediction from remote sensing [6], and SDMs
[7]. Recent advances in spatio-temporal deep learning provide a foundation for our approach. In
climate and Earth observation, transformer models (e.g., EarthFormer) and ConvLSTM capture
space—time dependencies for tasks such as precipitation and ENSO forecasting [8, 9]. EcoCast
builds on these advances by adopting a similar Transformer-based architecture, but extends it to
the multi-modal context of ecological forecasting with a persistent model that can be incrementally
retrained with new data to stay current. The framework incorporates rehearsal-style updates combined
with stability mechanisms to mitigate forgetting and support incremental retraining [[10]. Recent
work in ecological forecasting distinguishes between long-term climate projection-based SDMs and
near-term operational forecasts that inform immediate management decisions [L1} [12]. EcoCast
extends this paradigm to biodiversity applications through transformer-based sequence modeling,
bridging the gap between geophysical forecasting architectures and species distribution modeling.

3 Proposed Approach

EcoCast’s workflow is structured into three phases (Figure[I|provides a conceptual overview). First,
we create a pre-trained spatio-temporal model using historical multimodal data. Next, the framework
is designed with a continuous learning pipeline to ingest new data and update the model incrementally.
Finally, we envision deployment through practitioner-focused tools for visualization and feedback.

We use a monthly environmental time series covering the period from 2016 to 2023. Satellite inputs
are monthly Sentinel-2 composites derived from 30 m products and resampled onto a fixed continent-
scale grid, and climate inputs are monthly ERAS variables (Appendix [A.4). Bird occurrence data
were obtained from Global Biodiversity Information Facility (GBIF) and aggregated by month to
a 0.1° grid (= 10-11 km at the equator) across Africa. We pre-train our model on data from 2016
to 2021 and fine-tune it on 2022 before evaluating on 2023. By pre-training on this broad dataset,
the model learns general spatio-temporal patterns (such as seasonal vegetation cycles or climate
anomalies) relevant to the species’ ecology.

3.1 Operational Near-term Forecasting Framework

We train a transformer-based architecture for spatio-temporal sequence modeling. Unlike traditional
SDMs that require projected future climate scenarios (e.g., RCP4.5, RCP8.5) to forecast decades
ahead, EcoCast implements an operational near-term forecasting paradigm designed for real-time
conservation decision-making at monthly to seasonal timescales (see Appendix for detailed
comparison).

At each time step ¢, the model receives a temporal sequence of environmental covariates x;_ 1.4 =
(¢—1+41,- .., 2t), where each monthly observation x, combines satellite imagery features (Sentinel-
2 bands, vegetation indices) and climate variables (ERAS temperature, precipitation, etc.). The
architecture predicts species occurrence y;; for the next month using observed historical data
(Equation|[T)):
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where L is a class-imbalance-robust loss and fy denotes our transformer encoder with parameters 6.
We set the sequence length L. = 12 months to capture annual seasonality critical for avian phenology
while maintaining computational efficiency.

We summarize resampled Sentinel-2 inputs within each 0.1° grid cell per month using band-wise
statistics, and similarly aggregate monthly ERAS climate variables at the same spatial resolution. At
each grid cell and month ¢, we combine satellite and climate features into a unified environmental
vector x; € R¥, where F includes spectral bands, vegetation indices, and climate variables (see
Appendix [A.8] for detailed illustration). To capture temporal dynamics and seasonal patterns, the
model ingests sequences of L consecutive monthly vectors (X;_ 741, ...,%;) € REXF and predicts
species occurrence ¥, at the next time step.

Given that our species data are presence-only, for training, we generate pseudo-absences within the
study area and the same temporal window. We thin occurrences spatially to the 0.1° grid to reduce
clustering and sampling bias[13}[14]. Additionally, we compute a sampling-effort covariate (based
on monthly GBIF records) to help the model account for areas of high observer effort. The same
pseudo-absence and thinning protocol is applied to the baseline model for fairness. In addition, we
use stratified mini-batches that balance presence and pseudo-absence instances per species and a
class-weighted approach to stabilize learning on rare positives.

For continual learning, our framework is designed to perform constrained updates when new data at
t+1 arrive. The architecture supports rehearsal-based updates with weight regularization, maintaining
a fixed-size replay buffer of past examples and applying Elastic Weight Consolidation (EWC) to
prevent catastrophic forgetting. The fine-tuning objective combines supervised loss on new data with
a regularization term (Equation 2)):

K
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where Qgwc penalizes deviations from important parameters estimated on prior data. For the current
evaluation, we employ rolling-origin validation with warm-start initialization, where each temporal
window trains on all available historical data up to that point. This simulates operational deployment
conditions while providing a rigorous baseline for future continual learning work.

To interpret predictions, we compute transformer attention rollout over space—time to highlight
influential regions and months, and apply patch-wise permutation tests to verify that attributions
reflect signals. For additional diagnostics, we use Grad-CAM-style attribution adapted to ViTs
[L5,[16]. We flag cases where attributions may contradict ecological priors (for instance, focusing
on clouds rather than vegetation change). We adopt spatio-temporal block cross-validation where
folds are defined by spatial blocks and held-out years to prevent leakage and over-optimism[17]].
Thresholds for F1 are selected on the validation split per species; AUC is computed per species and
then macro-averaged across species.

4 Results

A pilot study was conducted on five bird species (see Appendix [A.3|for the full list) across Africa.
The monthly Sentinel-2 and ERAS inputs were prepared as described in Section[3] and the GBIF
records were aggregated to 0.1° cells by month. As a baseline, we trained species-specific Random
Forest classifiers using static covariates plus occurrence records, with the same pseudo-absence,
thinning, and block CV protocol as the main EcoCast model.

4.1 EcoCast Implementation and Results

As described in Section[3] EcoCast performs sequence-to-point forecasting: 12-month environmental
sequences (satellite + climate features) predict next-month species occurrence. This operational
framework was trained on 2016-2021 data, fine-tuned on 2022, and evaluated on held-out 2023
observations using rolling-origin validation to simulate real-world deployment conditions.

Table[T]demonstrates EcoCast’s performance gains over the Random Forest baseline. The transformer
architecture’s ability to model long-range temporal dependencies via self-attention, learn species-



specific phenological patterns through positional encoding, and leverage cross-species ecological
signals through joint multi-label training yields macro-averaged F1 and PR-AUC improvements of
+34 and +43 percentage points, respectively. These results validate that explicit sequence modeling
through transformer architectures is critical for near-term biodiversity forecasting, providing a foun-
dation for the continual learning extensions and multi-task predictions planned for future iterations
(see Appendix [A.6|for detailed architectural analysis).

Table 1: Comparative performance on 2023 holdout data for five bird species. RF-ROE (Random
Forest with Rolling Origin Evaluation) trains separate models per species using flattened tabular
features without explicit temporal modeling. EcoCast employs a transformer encoder over environ-
mental sequences to predict species occurrence at month ¢ + 1.

Model F1 macro PR AUC macro
Baseline (Random Forest ROE) 0.31 0.29
EcoCast (t+1 forecast) 0.65 0.72

S Pathway to Impact

We plan to partner with groups like the Wildlife Conservation Society to validate EcoCast outputs
on the ground. The Federal Ministry of Environment could use EcoCast to inform protected area
management. This model will provide real-time forecasts highlighting areas at the highest biodiversity
risk, enabling swift allocation of resources. Additionally, this could guide scenario analysis for land-
use planning, evaluating the potential impacts of infrastructure projects (for instance, new roads)
on bird habitats, and inform more sustainable development strategies. Once validated in Africa,
the approach can extend to other continent-wide biodiversity hotspots. We would develop a robust
API to enable African conservation NGOs and researchers to integrate local data, thereby further
improving EcoCast’s coverage and accuracy. Protecting biodiversity hotspots can sustain ecotourism
and preserve ecosystem services, supporting livelihoods. EcoCast can encourage citizen-science
participation, raising ecological awareness and empowering local stewardship.

6 Conclusion

We presented EcoCast, a spatio-temporal model for continual forecasting of biodiversity and climate-
related risks. EcoCast demonstrates how advances in machine learning, from powerful Transformer
architectures to continual learning techniques, can be utilized to address emerging challenges in
conservation. Our case study in Africa showed that EcoCast substantially outperforms traditional
static models in predicting near-term species distribution shifts, and more importantly, provides
actionable insights to conservation practitioners.

This work bridges the gap between cutting-edge Al and traditional ecology. Our proposed model is
designed as an evolving model, continuously refreshed with new data, and well-suited to addressing
climate change’s non-stationary impact on ecosystems. By integrating data and delivering user-centric
tools, we ensure that the model’s intelligence is accessible to important stakeholders who need it
most — conservation practitioners making important conservation decisions. Moving forward, we aim
to expand EcoCast’s coverage and involve a broader community of experts to carefully evaluate its
predictions. We will also explore scaling up the model (both in terms of architecture and training
data) to capture continental-scale patterns and to include other taxa beyond birds. Additionally, policy
engagement will be important. Demonstrating success stories where EcoCast-informed interventions
helped protect a species or habitat will build confidence among policymakers to formally incorporate
such tools into conservation planning processes. EcoCast shows a promising pathway for Al for
Good in the environmental domain. By continuously learning from the planet’s data and looping
humans in decision-making, such systems can help us stay one step ahead in preserving biodiversity
and fostering global climate resilience.
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A Appendix: Conceptual Diagram, Selected Species, and Environmental
Variables

A.1 Conceptual architecture of EcoCast

EcoCast Architecture
Spatio-Temporal Transformer for Biodiversity Forecasting
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Figure 1: Conceptual architecture: EcoCast ingests monthly Sentinel-2 and ERAS covariates aggre-
gated to a 10 km grid, stacks 12-month temporal sequences, and predicts multi-species occurrence
with a transformer encoder. The model performs ¢ + 1 forecasting: given environmental features
from months ¢ — 11 through ¢, it predicts species occurrence at month ¢ + 1 using self-attention
mechanisms to capture temporal dependencies and seasonal patterns.

A.2 EcoCast Predicted Probability of Occurrence
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Figure 2: EcoCast operational forecast (January 2024). Predicted probability of occurrence
across Africa for Phoeniculus purpureus and Bucorvus abyssinicus. The model uses 12-month
environmental sequences (January—December 2023) to forecast species distributions in January 2024,
demonstrating EcoCast’s capability for operational near-term biodiversity forecasting. This represents
a true out-of-sample forecast beyond the test period (2023), illustrating how conservation practitioners
could use EcoCast to anticipate monthly shifts in species distributions.



A.3 Species List
The five focal species used in the pilot study are:

e Psittacus erithacus (African Grey Parrot)

* Pitta angolensis (African Pitta)

* Tauraco persa (Guinea Turaco)

* Bucorvus abyssinicus (Northern Ground-Hornbill)

* Phoeniculus purpureus (Green Wood-Hoopoe)

A.4 Environmental Covariates

For the Sentinel-2 composites, we derived band-wise statistics and vegetation indices: EVI, NDWI, NDMI, and
NBR.

ERAS climate variables included: temperature, relative humidity, total precipitation, wind speed, and surface
pressure.

A.5 Detailed Comparison with Traditional SDMs
This approach fundamentally differs from climate projection-based SDMs in three ways:

1. No future climate projections required: EcoCast learns temporal dependencies and lagged ecological
responses from observed environmental sequences, enabling predictions without requiring GCM outputs or
emission scenario assumptions.

2. Sequence modeling via self-attention: Unlike Random Forest baselines that treat each (location, month)
observation independently, the transformer architecture explicitly models inter-month dependencies through
multi-head self-attention. This captures phenological patterns (e.g., “vegetation green-up in month ¢t — 3
predicts migratory arrival at t”’) and lagged climate effects automatically, without manual feature engineering.

3. Near-real-time operational capability: ERAS climate reanalysis becomes available within 5 days of
observation (preliminary ERAST) with final quality-assured data released 2—3 months later [18]. This enables
monthly forecast updates aligned with conservation planning cycles, rather than static decadal projections.

Copernicus Climate Change Service Key update to climate dataset brings data at five days behind real time.
Copernicus News, year=2025, url=https://climate.copernicus.eu/key-update-climate-dataset-brings-data-five-
days-behind-real-time

Our architecture supports longer windows (L < 24) when deeper historical context is available.

A.6 Architectural Advantages

The performance gap between EcoCast and RF-ROE highlights the limitations of treating temporal biodiversity
data as independent tabular observations. Random forests, while powerful for static prediction tasks, lack
mechanisms to capture:

* Temporal autocorrelation: Bird presence in month ¢ is highly predictive of month ¢ + 1 for resident species,
yet RF models each month independently.

* Lagged environmental responses: Species may respond to climate anomalies with 2—4 month delays (e.g.,
food availability following rainfall), which requires sequence modeling to capture effectively.

¢ Seasonal periodicity: Migratory species exhibit annual cycles that transformers encode through positional
embeddings, whereas RF requires manual construction of seasonal features.

A.7 Glossary of Acronyms
« ERAS: Fifth-generation of the European Centre for Medium-Range Weather Forecasts (ECMWF)
reanalysis for global climate and weather.
¢ SDM: Species Distribution Model

* GBIF: Global Biodiversity Information Facility, an international database of species occurrence
records.

¢ ViT: Vision Transformer, a Transformer-based architecture for image classification and analysis.
¢ Grad-CAM: Gradient-weighted Class Activation Mapping.



* EVI: Enhanced Vegetation Index, a vegetation index that corrects for atmospheric and soil background
effects.

* NDWI: Normalized Difference Water Index, highlights water content in vegetation and soil.
* NDMI: Normalized Difference Moisture Index, sensitive to vegetation canopy water content.
* NBR: Normalized Burn Ratio, used to detect burned areas and vegetation disturbance.

¢ ConvLSTM: Convolutional Long Short-Term Memory network, a recurrent neural network that
combines convolutional layers with LSTMs to capture spatio-temporal patterns.

* EarthFormer: A spatio-temporal Transformer model developed for Earth system forecasting
* Block CV: Block cross-validation, a spatial or spatio-temporal cross-validation scheme.

* ROE: Rolling Origin Evaluation. In this work, we pair ROE with Random Forest (RF-ROE) as a
baseline species distribution model.

A.8 Temporal Alignment of Satellite and Climate Data

This section details the temporal alignment of satellite imagery and climate variables within EcoCast’s sequence
modelling framework. Both data sources undergo identical temporal processing: satellite and climate features
are concatenated at each monthly time step to form unified environmental vectors, which are then arranged into
temporal sequences for input to the transformer model.

A.8.1 Unified Temporal Processing

EcoCast constructs environmental sequences by concatenating satellite and climate features at each monthly
time step before sequence construction. At each grid cell and month ¢, we combine:

X = [s¢,¢:] € R'® (3)

where s; € R'! contains Sentinel-2 bands (B2, B3, B4, B8, B11, B12) and vegetation indices (NDVI, EVI,
NDMI, NBR, NDWI) for month ¢, and c; € R contains ERA3 climate variables (2m temperature, relative
humidity, precipitation, wind speed, surface pressure) for the same month. The model then ingests a sequence of
these unified vectors:

X:[Xt_L+1,...,Xz} GRLXlG (4)

with L = 12 months, to predict species occurrence y:41 at the subsequent time step. Figure [3]illustrates this
construction process.

A.8.2 Key Design Principles

Three critical aspects ensure consistent temporal treatment:

1. Matched temporal resolution: Both satellite composites and climate aggregates are computed at monthly
granularity. Sentinel-2 observations within month ¢ are mosaicked and cloud-masked to produce representative
monthly statistics, while ERAS hourly data are averaged to monthly means.

2. Aligned spatial resolution: All features are resampled to a 0.1° grid (=10-11km at the equator) before
concatenation, ensuring spatial correspondence between satellite pixels and climate variables.

3. Uniform lag structure: The 12-month lookback window applies to the combined feature vector x.,
not to satellite and climate data separately. The transformer’s self-attention mechanism operates over
[x¢—11,...,%¢] as a unified sequence.

A.8.3 Architectural Implementation

EcoCast’s architecture is designed to learn joint spatio-temporal patterns across modalities. Formally, sequences
are constructed after feature concatenation at each time step:

[Xt—u, N ,Xt} = [[St—u, Ct—lﬂ, ey [Sz, Ct]] — Yt+1 (5)

This design enables the transformer to learn cross-modal temporal dependencies through self-attention. For
example, the model can learn that vegetation greenness (satellite) in month ¢ — 3 combined with precipitation
(climate) in months ¢ — 4 to ¢ — 2 jointly predict species arrival at month ¢ + 1, without requiring manual
specification of these lagged interactions.



EcoCast Temporal Alignment: Unified Processing of Satellite and Climate Data

Temporal Sequence Construction (L = 12 months)
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Figure 3: Temporal alignment diagram for EcoCast. Both satellite

dependency learning through self-attention mechanisms.

A.8.4 Notation Summary

For clarity, we provide consolidated notation:

¢ t: Current time step (month)

L = 12: Sequence length (lookback window)

e s, € R Satellite features at month ¢

e ¢; € R%: Climate features at month ¢

* Xt = [st,ct] € R6: Unified environmental vector
o X =[x¢-11,.-.,%Xt] € R'2>16: Input sequence

* 141 € {0,1}°: Multi-species occurrence at next month (5 bird species)

This uniform treatment ensures that both satellite imagery and climate data contribute equally to the model’s
understanding of spatio-temporal environmental dynamics, enabling robust near-term biodiversity forecasting

Species
occurrence

imagery (Sentinel-2) and
climate data (ERAS) are processed as monthly sequences with lag L = 12 months. At each time
step, satellite and climate features are concatenated () into unified environmental vectors x; before
sequence construction. The transformer model attends over this 12-month input sequence to predict
species occurrence at month ¢ + 1. This design ensures both modalities contribute equally to temporal

without requiring manual feature engineering or separate temporal modeling pipelines.
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