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Background

USAID estimates illegal logging to be a $150 billion industry, destroying the world’s forests. More than half of all
tropical deforestation is illegal, and contributes to the 1.5 gigatons of carbon released from deforestation annualy
(WWEF). However, developing countries struggle without the funding or human resources to monitor their vast ex-
panse of forests through forest patrol. The advent of machine learning allows for a remote sensing solution able to

monitor the large region of forestry at low costs. However, current monitoring solutions focus on clear cut deforesta-
tion and not selective logging, and thus, illegal logging at these smaller disturbances goes undetected. At the mass
quantities of selective logging occuring, forests are left with significant reductions in tropical biomass, growth of
weeds/ poor quality - low diversity trees, loss in biodiversity, and are more susceptible to forest fires and soil erosion.
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In the world's humid tropics, home to vast majority of forestry, persistent cloud cover often hinders the acquisition of clear opti-
cal satellite imagery. However, radar imagery overcomes this limitation by penetrating cloud cover, presenting an untapped op-
portunity for monitoring these regions. Moreover, integrating radar with optical imagery can improve the timeliness of detection,
as the differing orbits of Sentinel 1 / Sentinel 2 satellites can halve the interval for data acquisition from 12 to 6 days.



Data

Acquistion

Sentinel 1 and 2 imagery was ob-
tained through Google
Earth Engine. The dataset selected
location as Jamari National Park.
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The data sets compromised the following 12
band values from Sentinel 1 and Sentinel 2. The
Sentinel 1 VH and VV bands were selected for
both January and December. The Sentinel 2 B2,
B3, B4, B5, B6, B7, B8, BSA, B11, and B12 bands
were selected for both January and December. In
all, 24 band values were used for the combined

Sentinel 1 and Sentinel 2 data set.



Data Processing

Logged pixels and a subset of the stable forest pixels were identified to create a balanced dataset for
unbiased model. Raw 10x10 images were used. The December and January bands were then merged for
model to learn the difference in band values before/after logging. For the combined Sentinel 1/2 data-

set, the Sentinel 1 + 2 imagery was merged through concatenation.
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Data Sets

RV| = 40VH NDVI is a measure of vegetation using the difference be-
o tween near infrared which vegetation reflects back and red
oVV+oVH light which the vegetation absorbs. Meanwhile RVI is simi-

NDV| = NR-RED lar, but uses radar data and instead measures the scatter-
NIR + RED ing randomness of vegetation. RVI was calculated for Sen-
BS - B4 tinel 1 data. NDVI was calculated for Sentinel 2 data.
—  B8-+B4

This is the first study to create concatenated Sentinel 1/2 logging datasets. The integration of Sentinel 1/2 Data for

iogging detection has not been achieved prior to this study.

) 134,606 samples

One of the largest

selective logging data sets

created

Sentinel 1 Dataset Sentinel 2 Dataset Sentinel 1 and 2
Dataset

3 different data sets
were created: Senti-
nel 1, Sentnel 2, and
Sentinel 1 and 2 Com-
bined data set in
Numpy Array format
for CNN.



Models

The various models explored are CNN (U- Net), Random Forest, Gradient Boosted
Trees. The models are built using python libraries and trained and tested on
the Sentinel 1, Sentinel 2, and Sentinel 1 and 2 datasets.
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.The U-Net is a fully convolutional neural network which can take in
H input images of any sizes. The U net architecture is able to do seman-
U _N Et I m p I em entatlo n Of C N N tic segmentation using repeated application of 3 x 3 unpadded con-
volutions, batch normalization, and a 2 x 2 max pooling operation
followed by doubling feature channels To compensate for the small
oot | ]| ofal o 10x10 image sizes, the U — Net was modified by removing one of the
' down sampling layers and one of the up-sampling layers..
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¥ 128 I Random forest models construct multiple decision trees (similar to a
T forest) and each tree casts a vote on which class the input data
" ' H" should be labeled as.
266 258 e [ » ;
| ;-|+ : !+H : Gradient boosted trees are similar to random forest in that they're
Iii e/ ¥ max pool 2x2 both ensemble methods, combining decision trees. The difference
egizze -t - conv 1x1 lies in random forests building independent decision trees and com-
Adapted from Ronneberger et al. bining them at the end whereas gradient boosted trees use a method
Diagram of U-Net Architecture called boosting to learn from the errors of the past trees.

Data Inputted 3 models run  Map Output

S I To gather data on the accuracy/F1 score for each model, the
9 ﬁ .- === ¥ main hyperparameters (learning rate and batch size) were
- . tuned using both brute force optimization and grid search.
m _ The CNN model performed the best loss and accuracy wise
e _ when using a batch size of 64 and a learning rate of1.1e-4.

Split 10% Evaluating (5% Testing 5% validation) / 90% Training



Results

The models all improved from the integration of radar and satellite imagery, with the CNN performing best at 95.08 7
accuracy and 94.73 F1.
Pre existing solutions record 88% accuracy rate using only Sentinel 1, so this is a 7.087% increase.
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Results

AUROC

Receiver Operating Characteristic

104 —
.ff
-’.-"
g
0.8 1 P
‘I
IH’
g P
ar 06 - J..-#
& .
& e
-
§ 0.4 -
#
I’
,f’
-
0.2 1 o
Jf
.ff
P ROC curve (area = 0.99)
0.0 1 . s .
0.0 0.2 0.4 o6 0.8 1.0

False Positive Rate

The XGB model achieved an AUROC score
of 0.98537 which shows high potential in
detecting logged/stable forest as an ideal
classifier achieves a score of 1.

Confusion Matrix

Confusion Matrix
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All images/graphs were created by the
student researcher unless otherwise noted.

Metrics

TP =True positives, i.e. the number of defor-
ested areas classified as deforested.

TN =True negatives, i.e. the number of forest-
ed areas classified as forested.

FP = False positives, i.e. the number of forested
areas classified as deforested.

FN = False negatives, i.e. the number of defor-

ested areas classified as forested

Accuracy = (TP +TN) /(TP +TN + FP + FN)
Precision=TP /(TP + FP)
Recall =TP / (TP + FN)
F1 = 2 x (Precision x Recall) / (Precision +
Recall)



Logging Maps
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Small regions were selected for use as

testing locations for
. Using MATLAB and sea-

born libraries, the models will be used to
output prediction for each pixel and gen-

Significance

both optical and radar imagery for
deforestation classification results in massive
performance improvements (CNN - 3.13%) and
increase from existing models
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