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USAID estimates illegal logging to be a $150 billion industry, destroying the world’s forests. More than half of all 
tropical deforestation is illegal, and contributes to the 1.5 gigatons of carbon released from deforestation annualy 
(WWF). However, developing countries struggle without the funding or human resources to monitor their vast ex-
panse of forests through forest patrol. The advent of machine learning allows for a remote sensing solution able to 

monitor the large region of forestry at low costs.  However, current monitoring solutions focus on clear cut deforesta-
tion and not selective logging, and thus, illegal logging at these smaller disturbances goes undetected. At the mass 

quantities of selective logging occuring, forests are left with signi�cant reductions in tropical biomass,  growth of 
weeds/ poor quality - low diversity trees, loss in biodiversity, and are more  susceptible to forest �res and soil erosion. 

In the world's humid tropics, home to vast majority of forestry, persistent cloud cover often hinders the acquisition of clear opti-
cal satellite imagery. However, radar imagery overcomes this limitation by penetrating cloud cover, presenting an untapped op-

portunity for monitoring these regions. Moreover, integrating radar with optical imagery can improve the timeliness of detection, 
as the di�ering orbits of Sentinel 1 / Sentinel 2 satellites can halve the interval for data acquisition from 12 to 6 days.
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Selective Logging Clear Cut Logging
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Data Location

Data Acquistion

Sentinel 1 Radar Imagery Sentinel 2 Optical Imagery 

Sentinel 1 and 2 imagery was ob-
tained through Google 

Earth Engine. The dataset selected 
location as Jamari National Park.

Image credited to Google Earth Engine Image credited to Google Earth Engine

Image credited to Google Earth Engine

Selected Sentinel 2 Bands

The data sets compromised the following 12 
band values from Sentinel 1 and Sentinel 2. The 

Sentinel 1 VH and VV bands were selected for 
both January and December. The Sentinel 2 B2, 
B3, B4, B5, B6, B7, B8, B8A, B11, and B12 bands 

were selected for both January and December.  In 
all, 24 band values were used for the combined 

Sentinel 1 and Sentinel 2 data set.

Selected Sentinel 1 Bands



Data Processing

bands

bands

Logged pixels and a subset of the stable forest pixels were identi�ed   to create a balanced dataset for 
unbiased model. Raw 10x10 images were used. The December and January bands were then merged for 
model to learn the di�erence in band values before/after logging. For the combined Sentinel 1/2 data-

set,  the Sentinel 1 + 2 imagery was merged through concatenation. 

image courtesey 
of Google Maps
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In the world's humid tropics, home to vast majority of forestry, persistent cloud cover often hinders the acquisition of clear opti-
cal satellite imagery. However, radar imagery overcomes this limitation by penetrating cloud cover, presenting an untapped op-

portunity for monitoring these regions. Moreover, integrating radar with optical imagery can improve the timeliness of detection, 
as the di�ering orbits of Sentinel 1 / Sentinel 2 satellites can halve the interval for data acquisition from 12 to 6 days.

One of the largest
selective  logging data sets 
created

Data Sets

Sentinel 1 Dataset

RVI = 4σVH
σVV+σVH

NDVI = NIR - RED
NIR + RED

 = 
B8 - B4

B8 + B4

Sentinel 2 Dataset Sentinel 1 and 2
Dataset

134,606 samples

NDVI is a measure of vegetation using the di�erence be-
tween near infrared which vegetation re�ects back and red 
light which the vegetation absorbs. Meanwhile RVI is simi-
lar, but uses radar data and  instead measures the scatter-
ing  randomness of vegetation. RVI was calculated for Sen-
tinel 1 data. NDVI was calculated for Sentinel 2 data. 

3 di�erent data sets 
were created: Senti-
nel 1, Sentnel 2, and 

Sentinel 1 and 2 Com-
bined data set in 

Numpy Array format 
for CNN.

This is the �rst study to create concatenated Sentinel 1/2 logging datasets. The integration of Sentinel 1/2 Data for 
iogging detection has not been achieved prior to this study. 

a.



ModelsModels
The various models explored are CNN (U- Net), Random Forest, Gradient Boosted 

Trees. The models are built using python libraries and trained and tested on
 the Sentinel 1, Sentinel 2, and Sentinel 1 and 2 datasets.

Deep LearningMachine Learning

decision 1 decision 2 decision 3
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Final Classi�cation
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Split 10% Evaluating (5% Testing 5% validation) /  90% Training

decision 1 decision 2 decision 3

Majority Voting

Final Classi�cation

input

Data Inputted 3 models run Map Output

. The U-Net is a fully convolutional neural network which can take in 
input images of any sizes.  The U net architecture is able to do seman-
tic segmentation using repeated application of 3 x 3 unpadded con-

volutions, batch normalization, and a 2 x 2 max pooling operation 
followed by doubling feature channels To compensate for the small 

10x10 image sizes, the U – Net was modi�ed by removing one of the 
down sampling layers and one of the up-sampling layers.. 

Random forest models construct multiple decision trees (similar to a 
forest) and each tree casts a vote on which class the input data 

should be labeled as.

Gradient boosted trees are similar to random forest in that they’re 
both ensemble methods, combining decision trees. The di�erence 

lies in random forests building independent decision trees and com-
bining them at the end whereas gradient boosted trees use a method 

called boosting  to learn from the errors of the past trees.  

To gather data on the accuracy/F1 score for each model, the 
main hyperparameters (learning rate and batch size) were 
tuned using both brute force optimization and grid search. 
The CNN model performed the best loss and accuracy wise 
when using a batch size of 64 and a learning rate of1.1e-4.

U-Net Implementation of CNN 

Diagram of U-Net Architecture
Adapted from Ronneberger et al. 



Results
The models all improved from the integration of radar and satellite imagery, with the CNN performing best at 95.08 % 

accuracy and 94.73 F1. 
Pre existing solutions record 88% accuracy rate using only Sentinel 1, so this is a 7.08% increase.

Accuracy With/ Without
Sentinel 1/2 Integration

All Models on Integrated 
Data Set

Accuracy Increase 
From Integration

Graph depicts accuracy integrated/individual for all models evaluated Graph depicts several metrics (Accuracy, Precision, Recall, F1)
 for all models evaluated Graph depicts accuracy increase from integration 

for all models evaluated



TP = True positives, i.e. the number of defor-
ested areas classi�ed as deforested.

TN = True negatives, i.e. the number of forest-
ed areas classi�ed as forested.

FP = False positives, i.e. the number of forested 
areas classi�ed as deforested.

FN = False negatives, i.e. the number of defor-
ested areas classi�ed as forested

TP = True positives, i.e. the number of defor-
ested areas classi�ed as deforested.

TN = True negatives, i.e. the number of forest-
ed areas classi�ed as forested.

FP = False positives, i.e. the number of forested 
areas classi�ed as deforested.

FN = False negatives, i.e. the number of defor-
ested areas classi�ed as forested

TP = True positives, i.e. the number of defor-
ested areas classi�ed as deforested.

TN = True negatives, i.e. the number of forest-
ed areas classi�ed as forested.

FP = False positives, i.e. the number of forested 
areas classi�ed as deforested.

FN = False negatives, i.e. the number of defor-
ested areas classi�ed as forested

Accuracy = (TP + TN) / (TP + TN + FP + FN) 
Precision = TP  / (TP + FP)

Recall = TP / (TP + FN) 
F1 = 2 x (Precision x Recall) / (Precision + 

Recall) 

Accuracy = (TP + TN) / (TP + TN + FP + FN) 
Precision = TP  / (TP + FP)

Recall = TP / (TP + FN) 
F1 = 2 x (Precision x Recall) / (Precision + 

Recall) 

Accuracy = (TP + TN) / (TP + TN + FP + FN) 
Precision = TP  / (TP + FP)

Recall = TP / (TP + FN) 
F1 = 2 x (Precision x Recall) / (Precision + 

Recall) 

Metrics

AUROC 
Confusion Matrix

The XGB model achieved an AUROC score 
of 0.98537 which shows high potential in 
detecting logged/stable forest as an ideal 
classi�er achieves a score of 1.

In Order from Left to Right, Top to Bottom,
TP, FP, FN, TN

All images/graphs were created by the 
student researcher unless otherwise noted. 

Results



Logging Maps

Small regions were selected for use as 
testing locations for logged /stable forest 
prediction maps. Using MATLAB and sea-
born libraries, the models will be used to 
output prediction for each pixel and gen-

Significance
Integrating both optical and radar imagery for 

deforestation classi�cation results in massive 
performance improvements  (CNN - 3.13%) and 

7.08% increase from existing models
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