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Background Engineering Goals

Use integrated approach that utilizes both radar and optical sensing data to
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USAID estimates illegal logging to be a $150 billion industry, destroying the In the world's humid tropics, home to vast

world's forests. More than half of all tropical deforestation is illegal, and contrib- £ T S A create an algorithm detecting selective logging with greater accuracy and time-
utes to the 1.5 gigatons of carbon released from deforestation annualy (WWF). E&# often hinders the acquisition of clear optical . . i
However, developing countries struggle without the funding or human resourc- 52 satellite imagery. However, radar imagery liness than current models offer (greater than 88% for selective logging)

es to monitor their vast expanse of forests through forest patrol. The advent of
machine learning allows for a remote sensing solution able to monitor the large |
region of forestry at low costs. However, current monitoring solutions focus on 5
clear cut deforestation and not selective logging, and thus, illegal logging at i
these smaller disturbances goes undetected. At the mass quantities of selective t"t f

W% overcomes this limitation by penetrating cloud
i cover, presenting an untapped opportunity for Refe I'e n CeS
monitoring these regions. Moreover, integrat-
ing radar with optical imagery can improve the
timeliness of detection, as the differing orbits
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Data Acquistion Data Processing Data Sets

Logged pixels and a subset of the stable forest pixels
were identified to create a balanced dataset for unbi-

Sentinel 1 and 2 imagery was ob- ased model. Raw 10x10 images were used. The Decem- RV| = 40VH NDVIis a measure of vegetation using the difference be-
tained through Google ber and January bands were then merged for model to o sVV+oVH tween near infrared which vegetation reflects back and red
Earth Engine. The dataset selected learn the difference in band values before/after log- light which the vegetation absorbs. Meanwhile RV! is simi-
location as Jamari National Park. ging. For the combined Sentinel 1/2 dataset, the Senti- NDV/| = NIR - RED lar, but uses radar data and instead measures the scatter-
nel 1+ 2 imagery was merged through concatenation. ~ NIR+RED  ing randomness of vegetation. RVI was calculated for Sen-

tinel 1 data. NDVI was calculated for Sentinel 2 data.
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The models all improved from the integration of radar and satellite imag- - : 10
The various models explored are CNN (U- Net), Random Forest, Gradient Boosted ery, with the CNN performing best at 95.08 % accuracy and 74.73 F1. ] = '
. c c . . B =F : 5 2 3 = e o A e e 0.8
Trees. The models are built using python libraries and trained and tested on Pre existing solutions record 887% accuracy rate using only Sentinel 1, so this Voo s o e
the Sentinel 1, Sentinel 2, and Sentinel 1 and 2 datasets. is a 7.08% increase. e A S
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.The U-Net is a fully convolutional neural network which can take in input images of any sizes. The U net 12 — L Ul 7475 [FN, TN I nteg rat| N g bOth Opt|ca|
architecture is able to do semantic segmentation using repeated application of 3 x 3 unpadded convolu- R e A s B e ation All images/graphs were created by the .
tions, batch normalization, and a 2 X2 max pooling operation foIIovyed by doublin_g feature channels To Klﬁooﬁssl&md student rgsea?cher unless otherwiseynoted. d nd rada I |magery fOr
compensate for the small 10x10 image sizes, the U — Net was modified by removing one of the down . . .
sampling layers and one of the up-sampling layers.. Receiver Operating Characteristic Metrics dEfO restation CIaSS|ﬁ cation
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Random forest models construct multiple decision trees (similar to a forest) and each tree casts a vote on P TP =True positives, i.e. the number of defor- Fresu ItS IN Massive
which class the input data should be labeled as. 0.8 22 ested areas classified as deforested. .
i s TN =True negatives, i.e. the number of forest- pe rfOrma nce im prove-
Gradient boosted trees are similar to random forest in that they’re both ensemble methods, combining g 0.6 & ed areas classified as forested. 0
decision trees. The difference lies in random forests building independent decision trees and combining z o FP = False positives, i.e. the number of forested mentS (CN N . 31 3 A)) d nd
them at the end whereas gradient boosted trees use a method called boosting to learn from the errors g o4 < 3 areas classified as deforested. o/ .
of the past trees. .~ FN = False negatives, i.e. the number of defor- /.08% Increase from exist-
02 ested areas classified as forested . d I
2 ; ROC curve (area = 0.99) I n g mo e S
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To gather data on the accuracy/F1 score for each moo!el, the main hyperpa Fatse Positive Aate Accuracy = (TP +TN) / (TP + TN + FP + FN)
rameters (learning rate and batch size) were tuned using both brute force e SET e el sehfeved arm AUTHOE seere Precision =TP / (TP + FP)
optimization and grid search. The CNN model performed the best loss and of 0.98537 which shows high potential in I (;‘ecé”fTPF/{(TP”J)f/F('T'D) B
. . . . . : = 2 x (Precision x Reca recision +
accuracy wise when using a batch size of 64 and a learning rate of1.1e-4. detecting logged/stable forest as an ideal Recall)

classifier achieves a score of 1.



