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Abstract

Illegal selective logging is devastating to the world’s biodiversity and forests, and
many countries face challenges in monitoring these forests. In the Amazon, 94% of
deforestation is attributed to illegal activities, primarily conducted through selective
logging—a practice that has received far less research attention than clear-cut de-
forestation. This study introduces a novel machine learning approach that enhances
the detection of selective logging by integrating Sentinel-1 Synthetic Aperture
Radar (SAR) data with Sentinel-2 optical imagery, moving beyond conventional
methods that rely on a single data source. Requisite data was collected through
Google Earth Engine for Sentinel-1 and Sentinel-2 and used to create three new
datasets of 134,606 samples (5x other studies). These datasets were then used to
train and evaluate three different classification architectures: Convolutional Neural
Networks (CNN), Random Forest, and Gradient Boosted Trees. The CNN model
trained on both modalities outperformed CNNs trained on individual Sentinel
datasets, achieving an accuracy of 95.08%, compared to 57.51% for Sentinel-1
and 91.95% for Sentinel-2. The Gradient Boosted Trees model, while slightly
less accurate with a 94.39% accuracy and a 94.03 F1 score, required significantly
less computational power. Our findings demonstrate that the integration of optical
and radar data substantially improves the prediction of selective logging activities,
achieving up to a 7.08% improvement over previous selective logging detection
research and offering a scalable solution for forestry monitoring in resource-limited
settings.

1 Introduction

Illegal logging is estimated to be a $150 billion industry, eventually contributing towards the 1.5
gigatons of carbon resulting annually from deforestation (World Wildlife Fund, n.d.). In the Brazilian
Amazon, selective logging is particularly common; rather than clearing the entire forest and leaving
barren land, most loggers opt for more subtle methods of harvesting only a small amount of highly
profitable trees. In doing so, measures such as canopy cover, biodiversity, or carbon content are
loosely preserved. Despite its importance, selective logging is notoriously difficult to detect and
quantify via remote sensing due to the subtle and diffuse nature of canopy damage.

While developing countries often lack resources to monitor protected forests, machine learning now
enables satellite-based disturbance alerts to support land management and combat illegal logging
(Hansen et al., 2016). Satellite monitoring systems focus on detecting full deforestation (complete
canopy removal), mainly using medium-resolution optical imagery such as Landsat ((Kuck et al.,
2021); (Vargas Zeppetello et al., 2020) ; (Hansen et al., 2016). However, Landsat’s 30m resolution is
often too coarse to detect individual tree fall gaps (10-20m across). Furthermore, the areas most prone
to deforestation are in the humid tropics, experiencing persistent cloudiness (especially in the wet
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season) which creates temporal gaps in optical monitoring and makes real-time detection of logging
challenging (Reiche et al., 2021). Consequently, many selective logging occurrences go undetected,
often disappearing within weeks due to the fast regeneration of vegetation. Additionally, although
methods for clear-cut deforestation detection are well developed and achieve accuracies over 90% in
many alert systems, selective logging has been less intensely studied, with the most recent study only
obtaining an accuracy of 88% (Kuck et al., 2021).

Synthetic Aperture Radar offers a complementary solution that can penetrate clouds. When a large
tree is removed, the radar backscatter from that area often changes in characteristic ways: loss of
canopy causes reduced volume scattering from leaves/branches and can increase ground returns or
double-bounce reflections from trunks and soil, especially at certain wavelengths and polarizations
(Kuck et al., 2021) Indeed, a growing body of work has validated SAR’s effectiveness for logging
detection. Rauste et al. developed a method to map selective logging in the Republic of Congo using
L-band ALOS PALSAR imagery acquired before and after logging, achieving high overall accuracy
in identifying logged areas (Rauste et al., 2013). Reiche et al., using only Sentinel-1 data, produced
an accuracy of 83.5% (Reiche et al., 2021). More recently, (Kuck et al., 2021). demonstrated that
X-band radar data (TerraSAR-X/TanDEM-X) processed with machine learning could detect selective
logging in the Brazilian Amazon with 88% classification accuracy .

Given that optical and SAR data provide complementary information, with optical images sensing
canopy spectral changes and SAR sensing structural changes, integrating the two could yield a more
robust selective logging detection approach than either alone. Since their launches in 2014 (Sentinel-1
radar) and 2016 (Sentinel-2 optical), both platforms provide 10 m resolution imagery every six
days, perfectly co-registered across the tropics. Yet, to date, no study has fully fused Sentinel-1 and
Sentinel-2 data for selective-logging detection, relying instead on either optical or radar observations
alone. While Hethcoat et al. (2021) explored Sentinel-1 time-series break-point detection, their
work did not integrate optical information nor employ deep-learning models on fused data. We
address this gap by developing a novel approach that fuses features from radar and optical data.
By leveraging a feature-fusion strategy, our approach overcomes some limitations of single-sensor
methods (e.g. optical-only methods failing under cloud cover, or SAR-only methods missing spectral
cues of vegetation stress).

2 Materials and Methods

2.1 Data Set Creation

The data set’s location was selected to be Jamari National Park, an area managed by the Brazilian
forest ministry using sustainable selective logging. We utilized multi-source satellite data, primarily
Sentinel-1 SAR imagery (C-band, 10 m, dual-polarization) and Sentinel-2 optical imagery (10–20
m, multi-spectral), acquired contemporaneously during logging periods in 2016. Sentinel-1 GRD
images in Google Earth Engine are preprocessed for orbit, thermal-noise and border-noise removal,
radiometrically calibrated to σ0, and terrain-corrected. Sentinel-2 Level-1C images are atmospher-
ically corrected to surface reflectance and cloud-masked to include only cloud-free pixels. Model
inputs consist of concatenated Sentinel-1 radar and Sentinel-2 optical bands over a two-week window,
capturing imagery both before and after logging events. Using a time series instead of a single
snapshot reduces false positives from static forest or soil variations by detecting change relative to
an initial baseline. Additionally, NDVI (Normalized Difference Vegetation Index) was computed
for the Sentinel-2 imagery, and RVI (Radar Vegetation Index) was calculated for the Sentinel-1
imagery. NDVI quantifies vegetation health by comparing near-infrared light, which vegetation
strongly reflects, with red light, which it absorbs, while RVI uses radar data to assess the scattering
variability of vegetation. Class imbalance – only a small fraction of the area is logged in any given
year – was addressed by up-sampling the logging class in training and using a stratified random
sampling of negatives to have nearly equivalent class sizes.

Three distinct datasets were generated: one using only Sentinel-1 data, one with only Sentinel-2 data,
and one that combined both. For the combined dataset, geospatially aligned satellite and radar bands
from each image and location were concatenated. In total, the datasets comprised 134,606 samples.
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2.2 Machine Learning Models

We evaluated three supervised methods: Random Forest (RF), XGBoost, and a U-Net CNN. The U-
Net (Milesial, n.d.) is a fully convolutional network—initially developed for biomedical segmentation
on limited data—that uses repeated blocks of unpadded 3×3 convolutions (doubling channels), batch-
norm, ReLU, and 2×2 max-pooling (halving spatial dimensions). The original version was designed
for larger images. To address this, one down-sampling layer and one up-sampling layer were removed
from the U-Net architecture. RF and XGBoost are nonparametric, tree-based classifiers trained on
the same feature set; their probabilistic outputs are averaged for the final prediction. The classifiers
were tuned via cross-validation. We trained the models to classify each data point as either “Selective
Logging” or “No Logging”.

3 Results

Standard accuracy metrics were calculated: overall accuracy, recall, F1 score, and AUC. Additionally,
to quantify the benefit of the multi-sensor approach, we trained and tested the model using only
optical features, and only SAR features, to see how the fused approach compared.

The data ia analyzed using each type of ML model (random forest, CNN, gradient boosted tree) and
then calculated on accuracy, precision, recall, and F1 score for each type of model.

Models (Sentinel 1) Accuracy (%) Precision (%) Recall (%) F1 (%)
CNN 78.2 79.5 76.8 78.1
Random Forest 57.5 58.3 55.6 56.9
Gradient Boost 58.1 59.2 56.7 57.9

Table 1: Performance metrics using solely Sentinel 1 data.

Models (Sentinel 2) Accuracy (%) Precision (%) Recall (%) F1 (%)
CNN 91.95 92.3 91.5 91.9
Random Forest 86.77 87.5 85.9 86.7
Gradient Boost 90.40 90.8 89.9 90.3

Table 2: Performance metrics using solely Sentinel 2 data.

Models Sentinel-1 & 2 Accuracy Precision Recall F1

CNN 95.08 93.32 96.28 94.73
Random Forest 92.46 92.42 91.09 92.64
Gradient Boost 94.39 93.58 94.49 94.03

Table 3: Performance Metrics Using Fused Sentinel-1 and Sentinel-2 Data.

When both radar and optical data are integrated, overall accuracy increases for all models, with the
CNN maintaining the top performance. Specifically, the CNN achieves 95.08% accuracy, 93.52%
precision, 94.28% recall, and a 94.73 F 1 score. The improved results confirm that the fusion of
optical and radar observations provides complementary information—radar’s structural insights
augmenting optical spectral signals—thereby enhancing the detection of smaller or more subtle
logging disturbances.

Figure 1 compares the accuracy of three machine learning model on different input configurations
(Sentinel-1 only, Sentinel-2 only, and integrated radar + optical). Each model has lowest accuracy
using radar-only data and improves significantly when switched to optical data. The greatest accuracy
gains occur when radar and optical imagery are fused.

These logging maps in Figure 2 are generated after merging Sentinel-1 (radar) and Sentinel-2 (optical)
satellite data, distinguishing between logged (red) and stable (green) forest areas.

4 Discussion

Our integrated dataset reached 95.08% detection accuracy—surpassing the ~88% previously reported
in the region (Jackson & Adam, 2020) and the 50–75% rates at <15m3ha−1 logging intensity
documented by Hethcoat et al. (2021), underscoring the novelty and significance of combining
optical (Sentinel-2) and radar (Sentinel-1) satellite data. By leveraging the complementary strengths
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Figure 1: Model Accuracy For the Different Datasets Created on the Various Models Tested.

Figure 2: Logging Map for Small Test Regions with Red Indicating Logged & Green Indicating
Stable Forest.

of spectral (optical) and structural (radar) information, the new approach consistently outperforms
current models that rely solely on one data source, improving accuracy by at least 3%, by leveraging
the complementary strengths of SAR and optical bands to better distinguish between logged and
stable forests.

From a methodological standpoint, the integration of both sensors addresses key limitations of prior
models that rely on a single data source. Radar data, which can penetrate cloud cover and detect
subtle structural changes in canopy layers, is particularly advantageous in persistently overcast
regions or during rainy seasons. Meanwhile, optical imagery captures nuanced spectral signals linked
to vegetation health and canopy stress. The fused dataset therefore offers a more comprehensive
representation of forest conditions, allowing the detection of smaller-scale or transient logging
disturbances that might remain undetected in single-sensor approaches.

Especially as illegal logging activities show an upward trend of decreasing in size but increasing in
frequency, the enhanced detail and performance gained by integrating Sentinel-1 and Sentinel-2 data
enable more effective detection of selective logging, offering a promising path forward in combating
deforestation.
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A Feature Selection

Table 4: Sentinel-2 Features
Band Resolution Wavelength Description

B2 10 m 443.9 nm (S2A) / 442.3 nm (S2B) Blue
B3 10 m 496.6 nm (S2A) / 492.1 nm (S2B) Green
B4 10 m 560 nm (S2A) / 559 nm (S2B) Red
B5 20 m 664.5 nm (S2A) / 665 nm (S2B) Red Edge 1
B6 20 m 703.9 nm (S2A) / 703.8 nm (S2B) Red Edge 2
B7 20 m 740.2 nm (S2A) / 739.1 nm (S2B) Red Edge 3
B8 10 m 782.5 nm (S2A) / 779.7 nm (S2B) NIR (Near Infrared)

B8A 20 m 835.1 nm (S2A) / 833 nm (S2B) Narrow NIR
B11 20 m 864.8 nm (S2A) / 864.2 nm (S2B) SWIR 1
B12 20 m 945 nm (S2A) / 943 nm (S2B) SWIR 2

The Sentinel-1 dataset included 4 band values (VV December, VH December, VV January, VH
January), the Sentinel-2 dataset contained 20 band values (B2 December, B2 January, B3 December,
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B3 January, B4 December, B4 January, B5 December, B5 January, B6 December, B6 January, B7
December, B7 January, B8 December, B8 January, B8A December, B8A January, B11 December,
B11 January, B12 December, and B12 January), and the combined dataset featured 24 band values.

B Model Info

For Random Forest, we optimized the number of trees, tree depth, and learning rate; for XGBoost,
we tuned the learning rate, max depth, and number of boosting rounds.

A PyTorch implementation of U-Net for semantic segmentation of high-quality images was adapted
for our purposes (Milesial, n.d.). The primary hyperparameters tuned were the learning rate and batch
size—with higher learning rates favoring smaller batch sizes, and vice versa. The model achieved its
best performance in terms of loss and accuracy with a batch size of 64 and a learning rate of 1.1e-4.
Moreover, using the Adam optimizer resulted in superior performance compared to gradient descent,
with Cross Entropy Loss serving as the loss function.

The Random Forest model was developed using the scikit-learn library. This ensemble method
determines whether a pixel has been logged based on its surface reflectance values. Essentially,
the model constructs multiple decision trees, each of which independently votes on the pixel’s
classification, with the final label determined by the majority vote.

Gradient Boosted Trees are ensemble methods that, like Random Forests, combine multiple decision
trees. However, while Random Forests build independent trees and aggregate their predictions at the
end, Gradient Boosted Trees employ a sequential boosting approach, where each tree is trained to
correct the errors of its predecessors. For this study, we utilized XGBoost—a popular implementation
renowned for its rapid training times, high performance, and advanced regularization features that
enhance the model’s generalization capabilities.

The dataset was divided into training and testing sets using a 90:10 split. Additionally, select small
regions were designated as testing sites to generate prediction maps for logged and stable forests.
Pixel-level predictions were then used to create detailed logging maps with MATLAB and the Seaborn
library.

C Results & Analysis

Figure 3: Accuracy Increase From the Fusion of Satellite + Radar Imagery for Various Models Tested.

(Figure 3 compares the accuracy gains achieved by fusing radar (Sentinel-1) and optical (Sentinel-2)
imagery, relative to using either sensor alone, across three different models: Random Forest, XGBoost,
and CNN (U-Net). The left bar in each pair (green) shows the accuracy increase from Sentinel-1–only
to the fused dataset, whereas the right bar (blue) represents the accuracy increase from Sentinel-
2–only to the fused dataset. All three models exhibit much larger accuracy improvements when
transitioning from Sentinel-1–only data to the integrated dataset. For instance, Random Forest shows
an increase of 34.35% in accuracy, while XGBoost and the CNN show increases of 36.87% and
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16.88%, respectively. This indicates that radar data alone captures less of the selective logging signal,
and that adding optical features provides significant complementary information. The accuracy gains
from Sentinel-2–only to the fused dataset are comparatively smaller, ranging from about 3% to 5%.
Random Forest experiences the largest overall improvement (34.35% from Sentinel-1 to fused),
suggesting that it benefits most from the added optical information. XGBoost shows a similar pattern
but with an even greater jump of nearly 37%. The CNN also improves notably, though its jump from
Sentinel-1 to fused ( 17%) is smaller than those of the ensemble methods, likely reflecting the CNN’s
stronger baseline performance on Sentinel-1 alone.

Figure 4: Performance Metrics For the Various Models Tested on the Integrated Radar & Satellite
Dataset.

(Figure 4 focuses exclusively on the integrated dataset, showing four key metrics—accuracy, precision,
recall, and F1 score—for each model. All three methods achieve high accuracy, exceeding 90%.
However, the breakdown reveals small differences in precision and recall, indicating trade-offs in
how each model handles false positives versus false negatives. The CNN tends to balance these
metrics well, leading to a slightly higher F 1 score overall. XGBoost, on the other hand, often shows
comparable or marginally lower precision/recall, suggesting it may prioritize capturing true positives
at the expense of a few more false alarms or vice versa. Random Forest still performs well across all
metrics but remains slightly behind the other two methods, reflecting the consistent trend seen in the
overall accuracy measurements from (Figure ??.

Figure 5: (Left) Area Under Curve for the CNN U-Net implementation. (Right) Confusion matrix for
the CNN U-Net implementation.

Figure 5 depicts the trade-off between the true positive rate (TPR) and the false positive rate (FPR)
across different classification thresholds. The area under the curve (AUC) is 0.99, indicating that
the CNN U-Net model can effectively separate logged and stable forest classes. An AUC close to
1.0 suggests that the model consistently achieves high TPR while maintaining a low FPR, reflecting
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strong overall discrimination between the two classes. The confusion matrix provides a more detailed
view of model predictions compared to ground truth. Most samples lie along the diagonal (top-left
and bottom-right cells), signifying correct predictions of “Logged” as logged and “Stable Forest” as
stable. The off-diagonal entries are relatively small, indicating few false positives (predicting logged
when stable) and few false negatives (predicting stable when logged). This balance aligns with the
high AUC observed in Figure 4(a) and confirms that the CNN U-Net performs well in minimizing
both missed detections and false alarms.

The comparative analysis of machine learning algorithms further supports the efficacy of the inte-
grated data. The CNN (U-Net) emerged as the top-performing model, consistently achieving the
highest accuracy and F 1 scores, likely because it learns spatial features directly from the imagery.
Nevertheless, XGBoost demonstrated performance that was only marginally lower, while being less
computationally demanding. Random Forest, although slightly behind in accuracy, remains appealing
for its interpretability and minimal tuning requirements.
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