Causal Effects of Winter Wheat on Soil Organic Carbon Under Climate Variability

Georgios Giannarakis*1, Vasileios Sitokonstantinou*2, Dimitrios Bormpoudakis1, Ilias Tsoumas1,2, Nikiforos Samarinas3,4, Gustau Camps-Valls5 and Charalampos Kontoes1. *Equal contribution

1. Beyond Center, National Observatory of Athens; 2. Artificial Intelligence Group, Wageningen University & Research; 3. Laboratory of Hydraulic Works, Aristotle University of Thessaloniki

4. Interbalkan Environment Center; 5. Image Processing Laboratory, Universitat de València

Motivation

SOC is key to climate mitigation and soil health.

We need to understand how it responds to crop choice/rotation.

But effects of crops vary with local climate.

We ask: What is the effect of wheat-based rotations on SOC and how is this effect moderated by soil and environmental conditions?

We aim to: Understand the heterogeneous effect of practices to prioritize them where they are most effective

Data

	Variable	Description	Units	Role	
	winter_wheat	Winter wheat-based rotations for ≥3 years	binary	Treatment	
	SOC	Soil Organic Carbon content	g C/kg	Outcome	
	clay	Three-year average clay content	%	Heterogeneity (X)	
	eco	Organic or conventional farming	binary	Heterogeneity (X) Heterogeneity (X)	
	t2m	Air temperature at 2 meters	К		
	tp	Total precipitation	m	Heterogeneity (X)	
	rotation_diversity	Number of distinct crop types within 5 years	1–5	Control (W)	
	geo	Latitude and longitude of field centroid	degrees	Control (W)	
u10		10 m wind speed m/s Control (W		Control (W)	
	snowc	Snow cover	%	Control (W)	
	stl	Soil temperature	K	Control (W)	
	swvl	Volumetric soil water	m³/m³	Control (W)	
	ssro	Subsurface runoff	m	Control (W)	

Conditional average treatment effect (CATE) (1)

Double Machine Learning (DML)

$$Y = \theta(X) \cdot T + g(X, W) + \varepsilon$$

$$\rightarrow Structural \ model \ (treatment \ effect + nuisance \ function)$$

$$T = f(X,W) + \eta$$

$$\rightarrow Treatment assignment model$$

$$\hat{m}(X, W) = E[Y \mid X, W], \quad \hat{e}(X, W) = E[T \mid X, W]$$

 \rightarrow Estimate nuisance functions with ML models

Conditional average treatment effect (2)

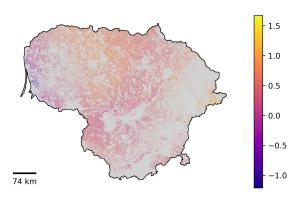
$$\hat{Y} = Y - \hat{m}(X, W), \quad T = T - \hat{e}(X, W)$$

 \rightarrow Compute residuals (remove confounding effects)

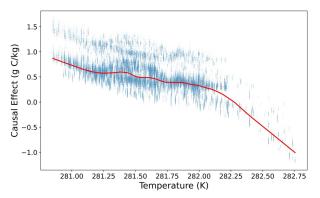
$$\hat{\mathbf{Y}} = \theta(X) \cdot T + \varepsilon$$

 \rightarrow Final stage regression for heterogeneous treatment effect (CATE)

$$\theta = arg \min_{\theta} E_n[(\hat{Y} - \theta(X) \cdot T)^2]$$

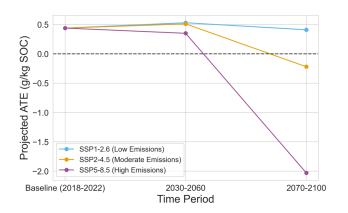

$$\rightarrow DML \ estimator \ minimizing \ residual \ prediction \ error$$

Heterogeneity of effects


Average Treatment Effect (ATE) = +0.44 g/kg

Heterogeneity:

Variable	Estimate	Std. Error	Z-score	P-value
clay	0.033	0.060	0.545	0.586
eco	0.535	0.654	0.819	0.413
t2m	-0.192	0.086	-2.217	0.027
tp	-0.159	0.094	-1.683	0.092
ATE	0.439	0.089	4.914	0.000



Map of the effects (in g/kg) of winter wheat rotations on SOC at the field-level in Lithuania

Causal effects as a function of temperature

Climatic scenarios

Projected ATEs of winter wheat rotations on SOC under different climate scenarios.

Conclusions

Winter wheat rotations increase SOC (+0.44 g/kg) but effects vary Cooler, drier regions gain the most

CATE insights guide region-specific management:

Promote winter wheat in the east

Use cover crops or erosion control in the west

Policy impact: CATE maps support **targeted incentives** and **climate-smart programs** that align local conditions with sustainability goals.

Climate sensitivity: under low emissions (SSP1-2.6) benefits persist; under high emissions (SSP5-8.5) they may vanish or reverse.

