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Abstract

Understanding how cropping decisions influence soil organic carbon (SOC) under
varying climate conditions is essential for sustainable land management. In this
study, we use causal machine learning to estimate the heterogeneous effect of winter
wheat-based crop rotations on SOC across 70,000 fields in Lithuania between
2018 and 2022. We quantify how temperature and precipitation influence the
effectiveness of winter wheat, finding that rotations increase SOC by an average
of +0.44 g/kg, but benefits are substantially lower in warmer and wetter regions.
Forward-looking analyses with CMIP6 climate projections indicate that SOC gains
may decline sharply under high-emission scenarios, potentially turning negative by
2100. These findings highlight the need for climate-sensitive, localized agricultural
strategies and demonstrate how causal inference can inform decision-making in
dynamic agroecosystems.

1 Introduction

Soil Organic Carbon (SOC) plays a critical role in both climate mitigation and agricultural sustain-
ability Paustian et al. [2016]. Increasing SOC improves soil health, enhances water retention and
contributes to long-term productivity Toensmeier [2016]. As a carbon sink, cropland soils store
approximately 83 PgC, with additional sequestration potential ranging from 29 to 65 PgC Padarian
et al. [2022]. Realizing this potential could offset up to 4% of average annual global greenhouse gas
emissions over the rest of the century Henderson et al. [2022].

Management practices like optimized crop rotations and conservation tillage can increase SOC Li
et al. [2024], Meng et al. [2024], but their effects are not uniform across regions or farming systems.
Factors like soil properties, crop selection, climate conditions and management intensity influence
how SOC responds, meaning one-size-fits-all recommendations often fail to capture local variability
Li et al. [2023], Behrendt and et al. [2024]. Winter wheat-based rotations provide a useful case study:
while intensive wheat cultivation can deplete soil nutrients, multi-year rotations including winter
wheat may increase carbon inputs through root biomass and crop residues, potentially enhancing
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SOC storage Persson et al. [2008], Alhameid et al. [2017]. Understanding these effects at fine spatial
scales is essential for informing sustainable intensification strategies Halvorson and Schlegel [2012].

Recent advances in remote sensing and machine learning have improved agricultural monitoring,
supporting tasks such as crop classification and yield estimation Liakos et al. [2018]. While these
tools excel at identifying patterns and making predictions, they do not reveal the underlying causes of
observed outcomes Giannarakis et al. [2022], Sitokonstantinou et al. [2024]. For example, a model
may predict SOC levels from satellite and soil data, but it cannot determine whether changes result
from specific management practices, such as winter wheat-based rotations, or from other factors like
climate or soil properties. To address this, we employ a causal inference approach using Double
Machine Learning (DML) to estimate Conditional Average Treatment Effects (CATE) Chernozhukov
et al. [2018]. This framework allows us to disentangle the true impact of winter wheat-based rotations
on SOC while accounting for confounders and revealing heterogeneity across fields.

We apply our causal inference framework to field-level data from Lithuania, integrating satellite-
derived environmental variables with administrative crop records. This allows us to quantify how
winter wheat-based rotations affect SOC across heterogeneous soils, climates and management
contexts, providing localized, evidence-based insights. Our analysis also enables the assessment
of climate sensitivity, identifying how key environmental factors modulate treatment effects and
exploring how SOC sequestration potential may evolve under future climate scenarios. By com-
bining high-resolution data with causal methods, we provide actionable guidance for sustainable
intensification, informing farmers and policymakers on where winter wheat rotations enhance SOC.

2 Data and Methods

Our study examines the impact of winter wheat rotations (treatment) on SOC (outcome) across
Lithuania from 2018 to 2022. Lithuania has a humid continental climate with moderate to high
precipitation and strong seasonal temperature variability, supporting diverse agriculture on about 50%
of its land Armolaitis et al. [2022]. Winter wheat (Triticum aestivum) is a dominant crop, mainly
cultivated in central and northern regions. Sown in autumn and harvested in late summer, winter
wheat rotations can improve SOC by adding root biomass and residues that decompose over time,
enhancing soil structure, water retention and nutrient availability Smith et al. [2008].

Crop and management data. We define winter wheat-based rotations (treatment, T ) as fields where
winter wheat was grown in at least three out of five study years (2018–2022). This information comes
from the Lithuanian Land Parcel Identification System (LPIS), which includes field boundaries,
declared crop types, and whether farming is organic or conventional. From LPIS, we also derived: (i)
a binary indicator of organic farming (eco), equal to 1 if a field was declared organic in at least one
year; (ii) crop rotation diversity, measured as the number of distinct crop types per field across the
five years; and (iii) the geographic coordinates (geo) of field centroids.

Soil data. We used national-scale maps of SOC and clay content produced by Samarinas et al.
Samarinas et al. [2023] for 2020–2022. Sentinel-2 bare soil composites were analyzed with a
convolutional neural network trained on LUCAS topsoil spectra, achieving R2 = 0.51 for SOC and
R2 = 0.57 for clay. For this study, SOC and clay values were averaged across 2020–2022 for each
field. SOC serves as the dependent variable, while clay is an important covariate influencing water
retention and soil fertility Matus [2021]. Environmental data. Weather variables were obtained
from the ERA5 reanalysis Hersbach et al. [2020], aggregated to field level. We included monthly
averages of air temperature (t2m), total precipitation (tp), wind speed (u10), snow cover (snowc),
soil temperature (stl4), soil moisture (swvl), and solar radiation (ssro). These capture key short-term
drivers of crop growth and SOC dynamics.

Climate projections. To assess long-term climate sensitivity, we used CMIP6 projections for three
Shared Socioeconomic Pathways (SSP1-2.6, SSP2-4.5, SSP5-8.5) Riahi et al. [2017], representing
sustainability-focused, intermediate, and high-emission futures. Monthly temperature and precipita-
tion projections (2024–2100) were extracted, with historical climate as baseline. We evaluated two
horizons (2030–2060, 2070–2100) to examine how winter wheat may affect SOC under different
climate trajectories, performing inference by applying the trained causal model to the projection data.

Causal model estimation. We use a causal inference approach to estimate how winter wheat rotations
influence SOC, while accounting for other factors that could affect both the treatment and the outcome.
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Specifically, we target the CATE, defined as τ(x) = E[Y (1)− Y (0) | X = x], which expresses how
the effect of winter wheat (T ) varies depending on the characteristics of each field (X) Rubin [2005].
Our identification relies on the conditional independence assumption (Y (1), Y (0)) ⊥⊥ T | (X,W ),
which states that once we condition on observed covariates, no unobserved confounders remain.

We separate covariates into two groups. First, heterogeneity variables (X) are factors expected
to influence how winter wheat affects SOC, such as soil clay content and local temperature and
precipitation. Second, control variables (W ) are included to account for other influences that might
confound the relationship between winter wheat and SOC, such as crop rotation diversity, farming
type, field location and additional climate variables (snow cover, wind, soil moisture). To estimate
the CATEs we use DML Chernozhukov et al. [2018], which removes the influence of confounders
from both the treatment and the outcome before estimating the causal effect, thereby reducing bias
in high-dimensional settings. In practice, we first use machine learning models to approximate the
conditional expectations m̂(X,W ) ≈ E[Y | X,W ] and ê(X,W ) ≈ E[T | X,W ]. We then compute
residuals Ỹ = Y − m̂(X,W ) and T̃ = T − ê(X,W ), and finally regress Ỹ on T̃ conditional on X .
This procedure, implemented via the CausalForestDML estimator in EconML, uses random forests
to flexibly capture heterogeneous effects across space.

To explore how future climate conditions might affect the impact of winter wheat on SOC, we use the
trained causal model together with projected changes in temperature and precipitation for two periods:
mid-century (2030–2060) and late-century (2070–2100). By updating only these climate variables
while keeping all other field characteristics the same, we can estimate how shifts in temperature and
rainfall could change the effectiveness of winter wheat rotations in storing carbon. While our model
accounts for many important factors, there may still be unobserved influences, such as fertilization
practices, tillage intensity, or residue management, that could affect SOC. However, we found that
fields with and without winter wheat rotations were similar in terms of the factors we did measure,
as indicated by good overlap in propensity scores (a measure of how likely each field is to receive
the treatment based on observed characteristics), which increases our confidence that the estimated
effects reflect the true influence of the crop rotations (see Appendix Fig. 5.2).

3 Results and Discussion

We took several preprocessing steps to ensure data reliability and comparability. We filtered fields
based on low prediction uncertainty for SOC and clay content (as they are products of machine
learning models). To reduce bias, we applied a propensity score filter, excluding fields with a
propensity to adopt winter wheat outside the 0.2 to 0.8 range. This step focuses our analysis on the
region of common support (see Fig. 5.2 in the Appendix).

Average effects. Our results indicate that winter wheat-based rotations are linked to significantly
higher SOC content, with an estimated ATE of +0.44 g/kg (Table 1). This finding, derived from our
CATE model’s intercept, is consistent with local studies showing winter crops positively influence
soil organic matter Liaudanskienė et al. [2011], Slepetiene et al. [2010]. Winter wheat helps increase
SOC by extending the period of active growth and soil coverage, contributing to continuous carbon
inputs. This is particularly relevant in Lithuania, where many fields are otherwise bare during winter
Eurostat [2020], supporting the idea that functional crop types matter more than sheer crop-species
diversity Wooliver et al. [2022], Mpeketula and Snapp [2019].

Coefficient Point Estimate Std. Error Z-score P-value 95% CI

clay 0.033 0.060 0.545 0.586 [-0.085, 0.151]
eco 0.535 0.654 0.819 0.413 [-0.746, 1.816]
t2m -0.192 0.086 -2.217 0.027 [-0.361, -0.022]
tp -0.159 0.094 -1.683 0.092 [-0.344, 0.026]

CATE intercept 0.439 0.089 4.914 0.000 [0.264, 0.614]

Table 1: Estimated coefficients for key covariates affecting the CATE of winter wheat-based rotations
on SOC content. The table reports point estimates, standard errors, Z-scores, p-values and 95%
confidence intervals for each predictor.

Drivers of causal effects. We found that the impact of winter wheat on SOC is strongly influenced
by local environmental factors, which explains the heterogeneity of treatment effects (see Fig. 1).
Temperature (t2m) showed a significant negative relationship, while precipitation (tp) also had a
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negative association, albeit not statistically significant (Table 1). Clay content and organic farming
status did not show significant effects. The importance of these features in modulating the treatment
effect is summarized in a SHAP plot (Fig. 5.3 in Appendix). The spatial distribution of these
effects (Fig. 1) reveals clear regional patterns. Warmer, wetter areas in western Lithuania show
minimal or even negative SOC gains, likely due to accelerated decomposition and increased erosion
risk. In contrast, the cooler, drier eastern regions exhibit the largest positive effects, where slower
decomposition favors SOC accumulation. A more detailed figure on the causal effects as a function
of temperature is shown in the appendix (Fig. 5.4).

Future projections. This heterogeneity becomes critical when considering climate change. We used
future temperature and precipitation projections from the CMIP6 model to simulate our trained model
under SSP1-2.6, SSP2-4.5 and SSP5-8.5 scenarios. The results (Figure A.5 in Appendix) show that
the SOC benefits of winter wheat-based rotations diminish under rising temperatures. Under the
low-emission SSP1-2.6, the effect remains positive but declines. However, under the high-emission
SSP5-8.5 scenario, the SOC benefits transition to a sharp loss by late-century, highlighting that the
effectiveness of this agricultural practice is highly climate-dependent.

Using CATEs for decision-making. The spatial and temporal variation in our CATE estimates
provides valuable insights for targeted agricultural policy. Our findings support region-specific
recommendations: winter wheat adoption could be promoted in the cooler, drier eastern regions
where it yields the largest SOC gains. In warmer, wetter western regions, alternative practices like
cover cropping may be more effective. This tailored approach, guided by CATE maps, allows for
precision interventions that maximize environmental benefits and ensure long-term sustainability.

Figure 1: Map of effects (in g/kg) of winter wheat rotations on SOC at the field-level in Lithuania.

4 Conclusion

Our findings demonstrate that winter wheat-based rotations can enhance SOC, with an average effect
of +0.44 g/kg SOC across Lithuania. Notably, increased SOC is not inherently incompatible with
intensive agriculture. Higher winter wheat utilization, often considered an indicator of agricultural
intensity Lynch [2022], is found to increase SOC, suggesting that specific intensive rotation regimes
can contribute to climate change mitigation. However, this benefit is not uniform across the landscape.
Cooler regions show stronger SOC gains, while warmer areas exhibit diminished or even negative
effects. Climate projections indicate that these benefits may decrease and potentially reverse, under
high-emission scenarios. By applying causal ML, we highlight the importance of accounting for
treatment heterogeneity in soil carbon management. CATE estimates enable the design of region-
specific agricultural strategies that are responsive to local environmental and climatic conditions.
Finally, integrating future climate scenarios offers a powerful framework for precision agriculture. It
helps balance productivity with long-term carbon sequestration goals and supports adaptive, resilient
land-use planning in the face of climate change.
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5 Appendix

5.1 Description of Variables

Variables Description Units Type
wheat winter wheat-based rotations for > 3 years binary Treatment

SOC soil organic carbon content g C/kg Outcome

clay three year average clay content % X
rotation number of different crop types within the 5 years 1-5 W

geo latitude and longitude of field centroid degrees W
eco organic or conventional farming binary X
t2m Temperature at 2 meters K X
tp Total precipitation m X

u10 10 metre U wind component m s−1 W
snowc Snow cover % W

stl Soil temperature level 4 K W
swvl Volumetric soil water layer 4 m3 m−3 W
ssro Subsurface runoff m W

Table 2: Variables used in the analysis, including their descriptions, units and assigned roles as either
heterogeneity features (X) or control variables (W ).

5.2 Supplementary Figures

This section provides additional figures that support the findings presented in the main text.

Figure 5.2: Overlap of propensity scores of the treated (winter wheat-based rotation applied, 1) and
untreated (not applied, 0) groups. The analysis was limited to fields with scores between 0.2 and 0.8
to ensure sufficient common support.
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Figure 5.3: SHAP summary plot depicting the relative importance of various features in predicting the
estimated CATE of winter wheat-based rotations on SOC content. This plot highlights temperature
(t2m) and total precipitation (tp) as the primary drivers of heterogeneity.

Figure 5.4: Causal effects as a function of temperature: Nonlinear relationship (LOWESS smoothed)
between mean annual temperature (t2m) and SOC content under winter wheat-based rotations. This
plot provides a more detailed view of the nonlinear trend discussed in the main text.

Figure 5.5: Decision tree model illustrating the interaction of key factors in modulating the treatment
effect of winter wheat-based rotations on SOC. This provides a clear, rule-based interpretation of the
causal heterogeneity.
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Figure 5.6: Projected ATEs of winter wheat-based rotations on SOC under different climate scenarios.
The baseline ATE for 2018–2022 is +0.44 g/kg SOC. Future projections incorporate SSP-based
temperature and precipitation shifts while keeping all other soil and management features constant.
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