# Geospatial Chain-of-thought Reasoning for Enhanced VQA on Satellite Imagery



## **Motivation & Impact**

Climate change impacts such as floods, wildfires, and droughts require fast, accurate interpretation of satellite imagery. Manual analysis is expert-dependent, slow, and hard to scale, motivating the need for Geospatial VQA systems. However, current models often provide direct answers without structured reasoning, limiting robustness, multi-step spatial analysis, and interpretability for high-stakes climate decisions.

#### Our Approach: Chain-of-Thought-Enhanced Geospatial VQA

- Adds transparent, step-wise rationales for complex spatial queries
- Improves interpretability and reliability in decision-critical scenarios
- Enhances generalization to unseen real-world geospatial conditions

This helps provide rapid decision support for emergency responders, expert-free insights allowing non-experts to query satellite imagery naturally, and supports urban planning, policy, and climate resilience.

## Proposed Framework & Approach

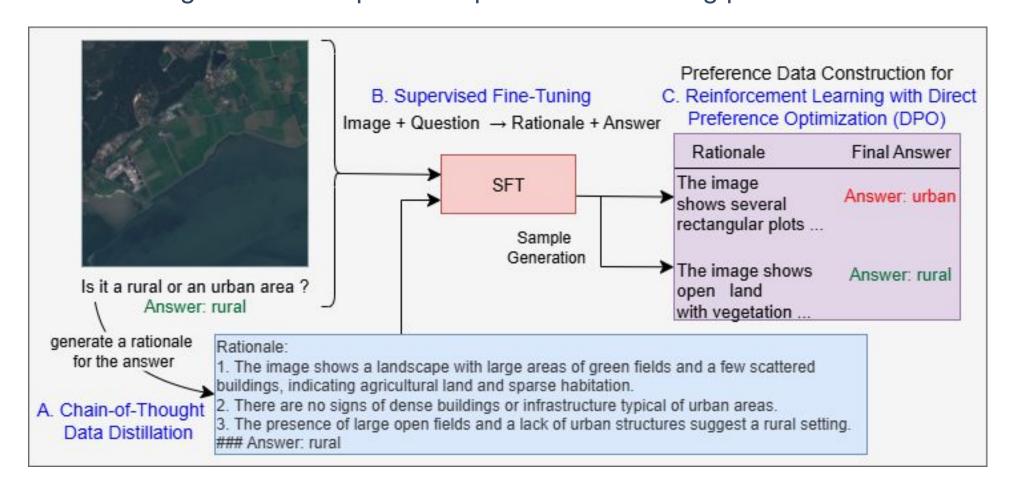
A geospatial VQA framework that integrates Chain-of-Thought (CoT) reasoning with Direct Preference Optimization (DPO).

#### **Key Components-**

- CoT-augmented supervision: Model generates intermediate reasoning steps to handle detection, classification, spatial relations, & comparison.
- DPO-based preference alignment: Reinforces high-quality reasoning and penalizes incorrect or weak rationales, improving robustness and interpretability.

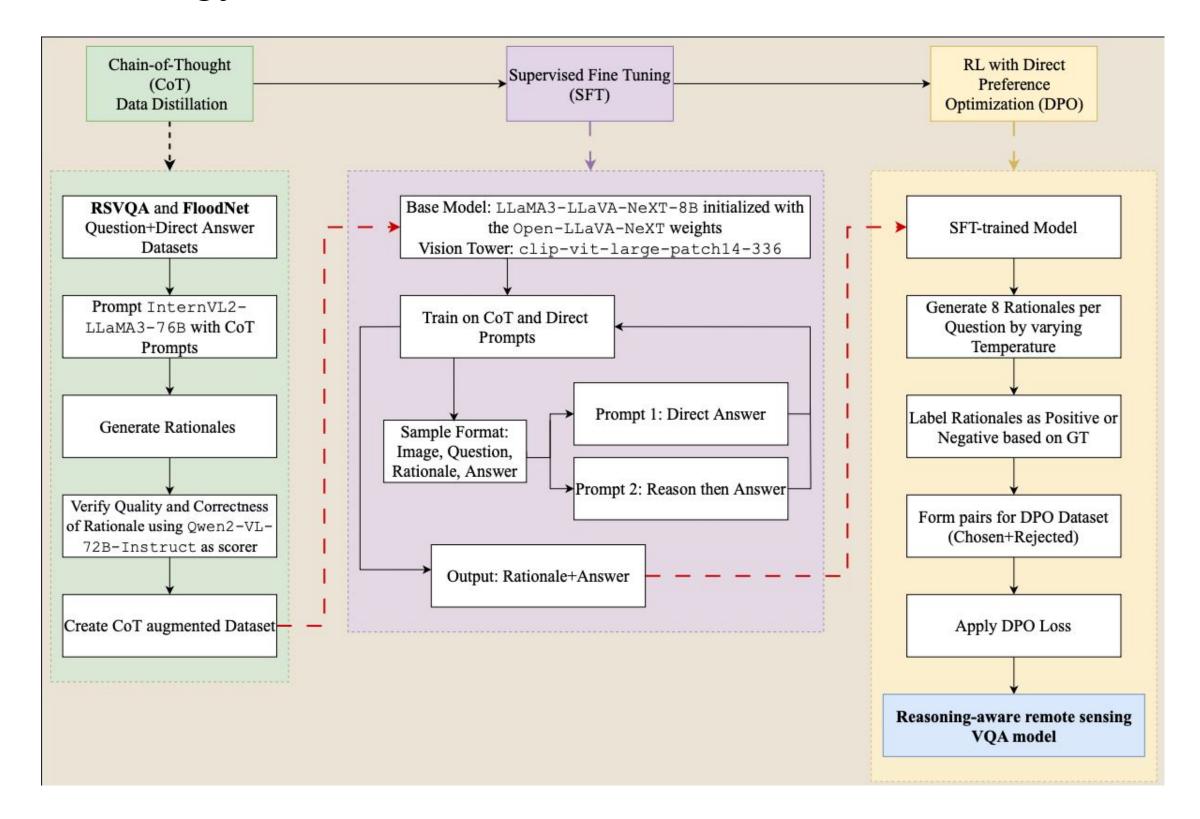
#### **Motivation-**

- CoT breaks down complex queries into intermediate steps, improving accuracy & interpretability.
- DPO aligns model outputs with preferred reasoning patterns.



Workflow diagram showing (A) Chain-of-Thought Data Distillation, (B) Supervised Fine Tuning (SFT), (C) Preference Data Construction for Reinforcement Learning with Direct Preference Optimization (DPO)..

# Methodology



# Results

| Approach                | <b>Total Samples</b> | Correct | <b>Overall Accuracy</b> | <b>Type-wise Accuracy</b> |        |          |             |
|-------------------------|----------------------|---------|-------------------------|---------------------------|--------|----------|-------------|
|                         |                      |         |                         | Comp                      | Count  | Presence | Rural/Urban |
| Initial Zero-Shot       | 14339                | 6858    | 0.4783                  | 0.3987                    | 0.1757 | 0.6091   | 0.6667      |
| SFT with Direct Data    | 14339                | 6940    | 0.4840                  | 0.4397                    | 0.2619 | 0.5611   | 0.8333      |
| SFT with CoT Data       |                      |         |                         |                           |        |          |             |
| (Projection Layer Only) | 14339                | 9548    | 0.6659                  | 0.6881                    | 0.1178 | 0.6890   | 0.7222      |
| DPO on SFT CoT Data     |                      |         |                         |                           |        |          |             |
| (Projection Layer Only) | 14339                | 10362   | 0.7226                  | 0.7099                    | 0.1652 | 0.7915   | 0.8333      |
| SFT with CoT Data       |                      |         |                         |                           |        |          |             |
| (All Weights Unfrozen)  | 14339                | 11868   | 0.8277                  | 0.8532                    | 0.2337 | 0.8511   | 0.7778      |

Performance comparison across fine-tuning strategies on RSVQA-LR and RSVQA-HR datasets. Results are reported as overall and type-wise accuracy for different question categories.

- Compared to the direct SFT baseline, CoT-based SFT on the projection layer improved overall accuracy by **18.19**%.
- Applying DPO on top of CoT data provided a further 5.67% improvement.
- Fine-tuning the entire model resulted in a **34.9**% improvement over the initial zero-shot baseline achieving an overall accuracy of **82.77**%.
- Zero-shot Evaluation on the *FloodNet* dataset: model fine-tuned on direct data achieved an accuracy of **59.1%**, while the model fine-tuned on CoT data achieved a higher accuracy of **67.4%**.

# The Role of Reasoning in Satellite Image Understanding

Q. Is the number of flooded houses greater than the number of non-flooded houses?

Direct Ans. Yes

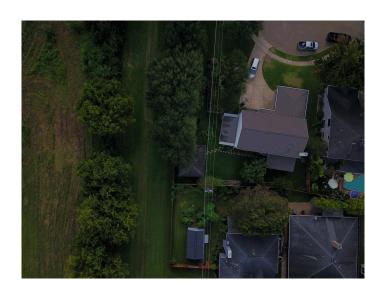
To arrive at the answer, we need to **detect** the houses, **classify** them as flooded or non-flooded, **count** them individually and **compare** them.



- Training VLMs on short answers doesn't generalise well to reasoning tasks that require more detailed responses.
- Reasoning helps the model break down complex geospatial questions into interpretable steps like object identification, spatial analysis, and comparison.
- Direct-answer training encourages shortcut learning, while CoT training provides richer contextual signals that teach the model the actual geospatial reasoning steps.

#### **Dataset**

| Dataset           | <b>Total Samples</b> | <b>Question Types</b>   | Answer Format         |  |
|-------------------|----------------------|-------------------------|-----------------------|--|
|                   |                      | Simple/Complex Counting | Numerical             |  |
| FloodNet          | 4510                 | Condition Recognition   | Flooded / Non-Flooded |  |
|                   |                      | Yes-No                  | Yes / No              |  |
| RSVQA-HR (15 cm)  | 62554                | Comparison (Comp)       | Yes / No              |  |
|                   | 02334                | Presence                | Yes / No              |  |
|                   |                      | Comparison (Comp)       | Yes / No              |  |
| RSVQA-LR (10 m)   | 10004                | Presence                | Yes / No              |  |
| KSVQA-LK (10 III) |                      | Counting                | Numerical             |  |
|                   |                      | Rural/Urban             | Rural / Urban         |  |



**FloodNet** 





RSVQA-HR

RSVQA-LR

#### References

Rahnemoonfar, M. et al. (2021). FloodNet: High-resolution aerial imagery for post-flood understanding. *IEEE Access*. Lobry, S. et al. (2020). RSVQA: Visual question answering for remote sensing. *IEEE TGRS*. Zhang, R. et al. (2024). Improving VLM Chain-of-Thought reasoning. *arXiv:2410.16198*. Soni, S. et al. (2025). EarthDial: Multi-sensor Earth observation to interactive dialogue. *arXiv:2412.15190*.