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Abstract

Geospatial chain of thought (CoT) reasoning is essential for advancing Visual
Question Answering (VQA) on satellite imagery, particularly in climate related
applications such as disaster monitoring, infrastructure risk assessment, urban
resilience planning, and policy support. Existing VQA models enable scalable in-
terpretation of remote sensing data but often lack the structured reasoning required
for complex geospatial queries. We propose a VQA framework that integrates CoT
reasoning with Direct Preference Optimization (DPO) to improve interpretability,
robustness, and accuracy. By generating intermediate rationales, the model better
handles tasks involving detection, classification, spatial relations, and comparative
analysis, which are critical for reliable decision support in high stakes climate
domains. Experiments show that CoT supervision improves accuracy by 34.9%
over direct baselines, while DPO yields additional gains in accuracy and reasoning
quality. The resulting system advances VQA for multispectral Earth observation
by enabling richer geospatial reasoning and more effective climate use cases.

1 Introduction

The growing impacts of climate change, including floods, wildfires, droughts, and extreme weather,
demand accurate interpretation of Earth observation data. Satellite imagery provides rich multispectral
and temporal views critical for disaster monitoring, risk assessment, and climate resilience, but manual
analysis is resource intensive and traditional machine learning pipelines remain narrow and task
specific. Vision language models (VLMs) address this gap by enabling natural language queries on
imagery with grounded responses, making climate information more accessible and actionable. This
is especially vital for domains such as flood mapping Rahnemoonfar et al. [2021], wildfire monitoring
Hong et al. [2023], and climate adaptation planning Rolnick et al. [2022], where timely insights
support disaster response and resilience.

Recent advances in multimodal learning have accelerated the integration of VLMs into Earth obser-
vation. Models such as EarthDial Soni et al. [2025] highlight this progress by enabling dialogue over
remote sensing data and demonstrating strong results in classification, detection, captioning, change
detection, and visual question answering. Other efforts, including RemoteCLIP Liu et al. [2024a],
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RS5M Zhang et al. [2024a], and GeoChat Kuckreja et al. [2023], contribute multimodal datasets and
benchmarks for geospatial tasks. Collectively, these developments mark a shift from task-specific
pipelines toward general-purpose frameworks capable of handling diverse geospatial queries. Such
capabilities are especially relevant for climate applications, where decision makers must synthesize
heterogeneous information under uncertainty. For instance, flood response requires reasoning about
water, infrastructure, and settlements, while wildfire monitoring demands temporal comparisons of
vegetation indices to assess burn severity and risks.

Despite this progress, existing VLMs often lack explicit reasoning. Trained primarily to provide
direct answers, they struggle with multi-step inference, causal reasoning, or comparative analysis.
In climate related decision making, where outputs must be accurate and trustworthy, this poses
risks. Prior work shows that chain-of-thought reasoning improves interpretability and robustness
Wang et al. [2023], Wei et al. [2022], Kojima et al. [2022], while reinforcement learning methods
such as DPO Rafailov et al. [2023] and RLHF Christiano et al. [2017] align reasoning with human
preferences. In multimodal settings, models like LLaVA-CoT Liu et al. [2023] and Multimodal-CoT
Zhang et al. [2024b] demonstrate that reasoning traces enhance performance and interpretability.
However, these advances remain underexplored in remote sensing, where reasoning over spatial
relationships, multispectral features, and temporal change is essential.

Our work addresses this gap by unifying two complementary directions in remote sensing VLM
research: reasoning-augmented supervision and preference-based alignment. Bringing these together
in the geospatial context not only enables more interpretable and trustworthy models but also
establishes a foundation for next-generation climate intelligence systems capable of supporting
decision-making in high-stakes, complex scenarios.

2 Datasets

We conduct experiments on RSVQA (Low- and High-Resolution) and FloodNet, A.1 with dataset-
specific question types and answer formats summarized in Table 2. RSVQA-LR is built from
Sentinel-2 imagery over the Netherlands at 10 m resolution Lobry et al. [2020], while RSVQA-
HR uses 15 cm aerial RGB images from the USGS HRO collection covering U.S. urban areas.
FloodNet contains high-resolution UAV imagery collected with DJI Mavic Pro quadcopters during
the Hurricane Harvey response (Texas/Louisiana, 2017), offering unique fidelity as real disaster-
response imagery Rahnemoonfar et al. [2021].

3 Methodology

Our pipeline consists of three main stages: (A) CoT Data Distillation, (B) Supervised Fine-
Tuning (SFT), and (C) Reinforcement Learning with DPO. Each stage builds on the previous
one, progressively improving the model’s ability to reason over geospatial imagery while producing
reliable and interpretable responses.

A. Chain-of-Thought Data Distillation The limited availability of CoT-annotated data for
geospatial VQA poses a significant challenge. To address this, we employ a data distillation strat-
egy that leverages existing direct answer data while enriching it with rationales. Specifically, the
InternVL2-LLaMA3-76B model Chen et al. [2024] is prompted with the image, question, and ground-
truth answer to generate step-by-step reasoning A.2 that leads to the correct prediction. This process
allows us to construct synthetic rationale-augmented training data from otherwise rationale-free
supervision.

To ensure quality, we introduce a verification step using Qwen2-VL-72B-Instruct Wang et al. [2024]
as an evaluator A.4. This model scores the rationales according to both their quality—defined in
terms of coherence, factual grounding, and logical consistency—and their completeness. Samples
with low-scoring rationales or with rationales that yield an incorrect final answer are discarded. The
result is a curated dataset of high-quality rationale-augmented examples suitable for downstream
fine-tuning.

B. SFT For fine-tuning, we use LLaMA3-LLAVA-NeXT-8B, initialized with Open LLaVA-NeXT
weights Liu et al. [2024b]. The training corpus contains two types of supervision: direct ques-
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Figure 1: Workflow diagram showing the methodology: (A) Chain-of-Thought Data Distillation, (B)
SFT, (C) Preference Data Construction for Reinforcement Learning with DPO.

tion–answer pairs and question–rationale–answer triples. We experiment with two parameter-efficient
strategies. In the first, only the projection layer is updated while the backbone and the vision tower
remain frozen. In the second, we unfreeze all parameters, including those of the vision tower
(CLIP-ViT-L/14@336px Radford et al. [2021]), allowing for end-to-end optimization.

Different prompt templates are used depending on the supervision type 5. When training on direct
QA data, the model is instructed to Answer the question with a short answer. In contrast,
when training on rationale-augmented data, the prompt is modified to Generate a reason first
and then output a short answer, where the rationale is followed by the answer in the format
### Answer: <final_answer>. The model is trained for two epochs in both settings, ensuring
exposure to both direct and rationale-augmented supervision.

C. Reinforcement Learning with DPO While SFT enables the model to produce rationales, it
does not guarantee that these rationales are consistent with user preferences or that they reliably guide
the model to correct answers. To further improve alignment, we employ DPO Rafailov et al. [2023], a
reinforcement learning method that directly optimizes the policy model by contrasting preferred and
non-preferred outputs. DPO formulates training as a binary cross-entropy objective that compares
the model’s likelihood of generating positive versus negative responses. In doing so, it increases the
probability of producing coherent and correct rationales while discouraging poor reasoning.

To construct preference pairs, we use the SFT model itself as the policy generator. For each input,
eight candidate responses are sampled: four with a decoding temperature of 0.2 and four with a
temperature of 0.6, ensuring a balance between determinism and diversity. Each response is evaluated
against the ground-truth answer 3, and data points lacking at least one correct and one incorrect
response are removed. From the remaining pool, one correct rationale–answer pair and one incorrect
rationale–answer pair are randomly selected, forming a positive–negative pair for DPO training. This
strategy yields a dataset that captures the range of plausible model behaviors while providing a clear
supervision signal.

Formally, the DPO training dataset is defined as

DDPO = {(I, x, y+, y−)},

where I denotes the input image, x the question, y+ the preferred (positive) rationale–answer, and
y− the non-preferred (negative) counterpart. The optimization objective is

LDPO(πθ;πref) = −E(I,x,y+,y−)∼DDPO

[
log σ

(
β

[
log

πθ(y
+ |x, I)

πref(y+ |x, I)
− log

πθ(y
− |x, I)

πref(y− |x, I)

])]
,

(1)
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where πθ is the policy model to be optimized, πref is the reference model initialized with SFT weights,
σ is the logistic function, and β is a scaling hyperparameter set to 0.1 in our experiments. This
formulation encourages the model to assign higher probability to preferred rationales and lower
probability to less desirable ones, thereby aligning the reasoning process more closely with correctness
and user expectations.

4 Results

Our experiments demonstrate the effectiveness of incorporating CoT supervision into vision-language
models for remote sensing question answering. Compared to the direct SFT baseline, CoT-based SFT
on the projection layer improved overall accuracy by 18.19%, highlighting the benefits of explicit
reasoning signals. Applying Direct Preference Optimization (DPO) on top of CoT data provided a
further 5.67% improvement, confirming the role of preference alignment in refining reasoning quality.
The most substantial gains came from fine-tuning the entire model (vision encoder, projection layer,
and language model), which resulted in a 34.9% improvement over the initial zero-shot baseline,
achieving an overall accuracy of 82.77%.

Approach Total Samples Correct Overall Accuracy Type-wise Accuracy

Comp Count Presence Rural/Urban

Initial Zero-Shot 14339 6858 0.4783 0.3987 0.1757 0.6091 0.6667
SFT with Direct Data 14339 6940 0.4840 0.4397 0.2619 0.5611 0.8333
SFT with CoT Data
(Projection Layer Only) 14339 9548 0.6659 0.6881 0.1178 0.6890 0.7222
DPO on SFT CoT Data
(Projection Layer Only) 14339 10362 0.7226 0.7099 0.1652 0.7915 0.8333
SFT with CoT Data
(All Weights Unfrozen) 14339 11868 0.8277 0.8532 0.2337 0.8511 0.7778

Table 1: Performance comparison across fine-tuning strategies on RSVQA-LR and RSVQA-HR
datasets. Results are reported as overall and type-wise accuracy for different question categories.

Our best-performing model also generates interpretable reasoning traces, which enhances user trust
and improves transparency. This is particularly valuable in remote sensing applications, where
understanding the rationale behind a prediction is as important as the prediction itself.

Despite these improvements, the model continues to struggle on counting-based questions, with type-
wise accuracy lagging behind other categories. We hypothesize that this is due to limitations in text-
based CoT explanations, which may not adequately represent precise numerical reasoning. Addressing
this limitation could require integrating explicit counting modules or grounding mechanisms that
align object-level detections with reasoning steps.

All models were trained on the RSVQA-LR and RSVQA-HR subsets and evaluated on the same
benchmarks. We also evaluated our fine-tuned models on the FloodNet dataset. The model fine-tuned
on direct data achieved an accuracy of 59.1%, while the model fine-tuned on CoT data achieved a
higher accuracy of 67.4%, suggesting improved transferability with rationale-based training but also
highlighting challenges in adapting to disaster-specific imagery. Training convergence was efficient,
with the model stabilizing within two epochs.

5 Conclusion

This work shows that chain-of-thought supervision enhances geospatial VQA by improving both
accuracy and interpretability. On RSVQA, CoT supervision yielded a 34.9% accuracy gain over
direct baselines, with DPO providing further refinement. On FloodNet, CoT also improved transfer
performance (59.1% → 67.4%), highlighting stronger generalization to disaster imagery. Beyond
accuracy, reasoning traces promote transparency and trust, which are vital in climate and disaster
response. Remaining challenges, especially in counting and cross-dataset adaptation, suggest the
need for explicit numerical reasoning and stronger transfer methods. Overall, structured reasoning
emerges as a promising pathway toward reliable and trustworthy geospatial AI.
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A Appendix

A.1 Datasets: Distribution and Visual Examples

Dataset Total Samples Question Types Answer Format

FloodNet 4510
Simple/Complex Counting Numerical
Condition Recognition Flooded / Non-Flooded
Yes-No Yes / No

RSVQA-HR (15 cm) 62554 Comparison (Comp) Yes / No
Presence Yes / No

RSVQA-LR (10 m) 10004

Comparison (Comp) Yes / No
Presence Yes / No
Counting Numerical
Rural/Urban Rural / Urban

Table 2: Overview of datasets used in this work, including total number of samples, supported
question types, and corresponding answer formats.

Figure 2: RSVQA-LR Figure 3: RSVQA-HR Figure 4: FloodNet
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A.2 Prompt Template for CoT Generation

Prompt for Rationale Generation

<|image|>
You are given a satellite image and a question, along with a
reference answer. Your task is to generate a detailed rationale
that uses the visual content of the image to derive the answer.

## Question
{question}

## Reference Answer
{answer}

## Instructions
- Do not state an answer at the beginning
- Use detailed reasoning grounded directly in what you see in the

image.
- Justify your conclusion clearly with observations.
- The reasoning should be clear, grounded in the visual content,

and should not speculate or estimate.
- Do not comment on the reference answer. Do not state whether the

reference answer is correct or consistent to your finding.
You are writing your own solution.

- Finish with a final derived one word answer on a new line as:

### Answer: <your_answer>

A.3 Input-Output Example for Model Evaluation

Figure 5: Prompt-based Model Input and Output
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A.4 Prompt Template for Rationale Evaluation

Prompt for Rationale Scoring

You are a visual reasoning expert. Your task is to verify if a given
rationale (chain-of-thought) explanation is logically coherent based on
the provided image, question, and answer.

Please follow these steps:
1. Read the question and analyze the image carefully.
2. Evaluate the rationale for:

- Logical consistency
- Visual grounding in the image
- Relevance and coherence
- Completeness (did it miss anything important?)

3. Determine whether the answer derived from the rationale follows
naturally and reasonably and is valid based on the image and question.

4. Compare the provided answer with the ground truth answer.
5. If the answers differ, decide which answer is more likely

correct.
6. Provide a quality score (0 to 10) indicating how confident you

are in the rationale.
7. Poor structure, vague reasoning, or lack of detail should lower

the score.

Format as JSON:
"rationale_logically_valid": true/false,
"rationale_consistent_with_image": true/false,
"rationale_correctness_score": float,
"rationale_quality_score": float,
"answer_follows_from_rationale": true/false,
"answer_matches_ground_truth": true/false,
"correct_answer": "model"/"ground_truth",
"explanation": "Short explanation"

A.5 Example: DPO Training Data Construction

Image + Question:

Are there more grass areas than roads? Answer in lower case. Generate a reason first and then
output a short answer.

Ground Truth Rationale + Answer:
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The image shows a large highway with multiple lanes of traffic, indicating a significant amount of
road space. The grass areas are limited to small patches on the sides and median of the highway,
which are much smaller in comparison to the road area. The majority of the image is dominated by
the road, with vehicles and lanes clearly visible, while the grassy areas are minimal and scattered.

### Answer: no

The image shows a road with multiple lanes and a grassy area on the side. The road
occupies a significant portion of the image, while the grassy area is relatively smaller. The
road is clearly the dominant feature, with multiple lanes and vehicles, indicating it is the
primary focus. The grassy area is limited to the side of the road and does not cover a large
portion of the image. ### answer: no
The image shows a road with multiple lanes and a grassy area on the side. The road
occupies a larger portion of the image compared to the grassy area. The grassy area is
limited to the sides of the road, while the road stretches across the image, indicating a
greater area of road compared to grass. ### answer: no
The image shows a large road with multiple lanes and a few grass areas. The road occupies
a significant portion of the image, while the grass areas are relatively small. The road is
clearly more extensive than the grass areas. ### answer: no
The image shows a highway with multiple lanes and a grassy area alongside it. There are
more visible lanes than grassy areas. ### answer: no
The image shows a large road with multiple lanes and several vehicles. The surrounding
area has a significant amount of grass, including a large green space and smaller patches of
grass. The road occupies a significant portion of the image, while the grassy areas are more
prominent and cover a larger area. ### answer: no
The image shows a highway with multiple lanes, and there are several grass areas visible on
both sides of the road. The grass areas are more extensive than the road itself. ### answer:
yes
The image shows a highway with multiple lanes and several vehicles. To the left of the
highway, there is a grassy area with trees. The grassy area is significantly larger than the
road lanes. The grass area occupies more space than the roads. ### answer: yes
The image shows a large area of grass on the left side and a long road on the right side. The
grass area is significantly larger than the road area. ### answer: yes

Table 3: Example of eight candidate responses for DPO preference data construction. Final answers
are highlighted in green (no) and red (yes).
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