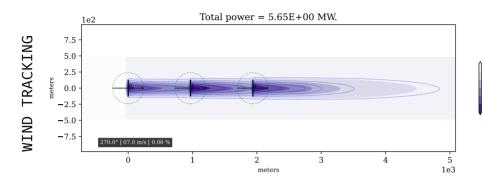
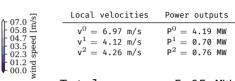


Helping mitigate climate change through efficient reinforcement learning-based wind farm flow control

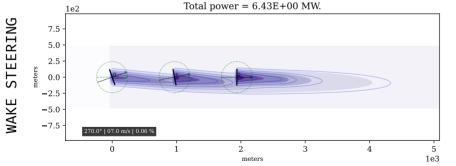
Elie Kadoche^{1,2} Pascal Bianchi¹ Florence Carton² Philippe Ciblat¹ Damien Ernst^{1,3} ¹Polytechnic Institute of Paris, 19 Place Marguerite Perey, 91120 Palaiseau, France ²TotalEnergies OneTech, 2 Place Jean Millier, 92400 Courbevoie, France ³Montefiore Institute, University of Liège, 4000 Liège, Belgium elie.kadoche@totalenergies.com

Wind farm flow control





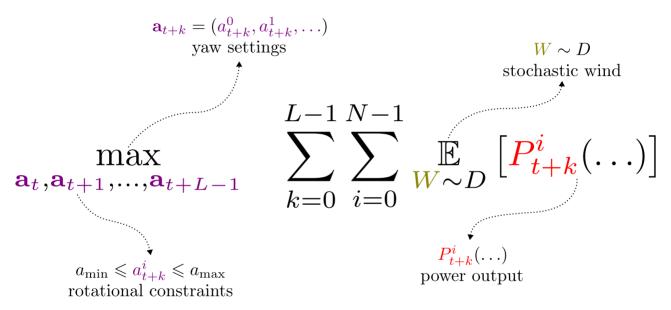
Total power = 5.65 MW.

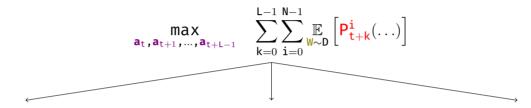


Local velocities	Power outputs
$v^0 = 6.97 \text{ m/s}$ $v^1 = 4.92 \text{ m/s}$ $v^2 = 5.07 \text{ m/s}$	${f P}^0 = {f 3.71~MW} \\ {f P}^1 = {f 1.27~MW} \\ {f P}^2 = {f 1.47~MW} \\$

[s/m] peads puix - 05.8 page 1 - 04.7 page 2 - 03.5 page 2 - 01.2 puix

Total power = 6.45 MW.





Myopic control

$$\max_{\mathbf{a}_{\mathsf{t}}} \sum_{\mathbf{i}=0}^{\mathsf{N}-1} \mathbb{E}\left[\mathbf{P}_{\mathsf{t}}^{\mathbf{i}}\right]$$

Simplistic approach.

Predictive control

$$\max_{\mathbf{a}_{\mathsf{t}}, \mathbf{a}_{\mathsf{t}+1}, \dots, \mathbf{a}_{\mathsf{t}+\mathsf{L}-1}} \sum_{k=0}^{\mathsf{L}-1} \sum_{i=0}^{\mathsf{N}-1} \mathbb{E}\left[\mathbf{P}_{\mathsf{t}+k}^{i} \right]$$

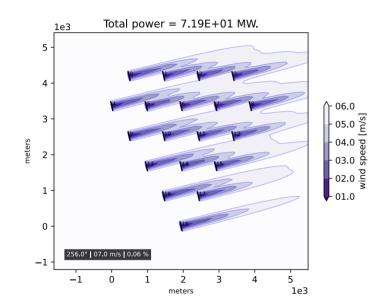
Model dependent.

Reinforcement learning

$$\begin{aligned} & \max_{\theta} \quad \mathbb{E} \left[\sum_{\mathbf{k}=0}^{\infty} \gamma^{\mathbf{k}} \mathbf{r}_{\mathsf{t}+\mathbf{k}+1} \right] \\ & \pi_{\theta}(\mathbf{s}_{\mathsf{t}}) = (\bar{\mu}_{\mathsf{t}}, \bar{\kappa}_{\mathsf{t}}, \mathbf{v}_{\mathsf{t}}) \\ & \mathbf{a}_{\mathsf{t}}^{\mathsf{i}} \sim \mathsf{von} \; \mathsf{Mises}(\mu_{\mathsf{t}}^{\mathsf{i}}, \kappa_{\mathsf{t}}^{\mathsf{i}}) \end{aligned}$$

Data-driven, model-free.

Reinforcement learning limitations



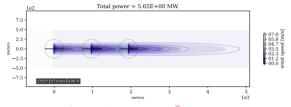
Generalization

Current RL methods only focus on limited sets of wind conditions.

Sample efficiency

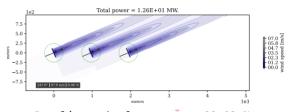
Training a model requires a large number of simulations.

$$\mathbf{r}_{\mathsf{t}+1} = rac{1}{\mathsf{N}} \sum_{\mathbf{i}=0}^{\mathsf{N}-1} rac{\mathsf{P}_\mathsf{t}^{\mathbf{i}}}{\Phi(\mathsf{V}_\mathsf{t})}$$



Baseline wake losses $\bar{\mathcal{L}}_t = 55.03$ %. Baseline power output $\bar{P}_t = 5.65$ MW. Theoretical maximum $\Phi(V_t) = 12.56$ MW.

Optimal reward: close to 0.5. Wake steering is optimal.

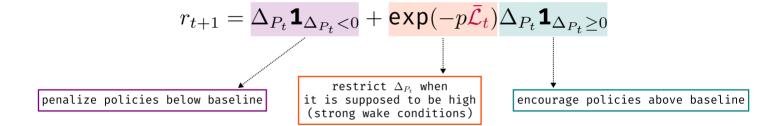


Baseline wake losses $\bar{\mathcal{L}}_t =$ 00.03 %. Baseline power output $\bar{\mathsf{P}}_t =$ 12.55 MW. Theoretical maximum $\Phi(\mathsf{V}_t) =$ 12.56 MW.

Optimal reward: close to 1. Wind tracking is optimal.

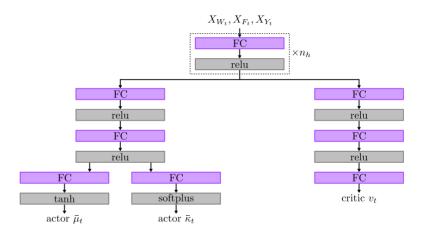
The policy learns a wind tracking solution, and it is enough to get high rewards.

$$\Delta_{P_t} = (P_t - \bar{P}_t)/\bar{P}_t$$



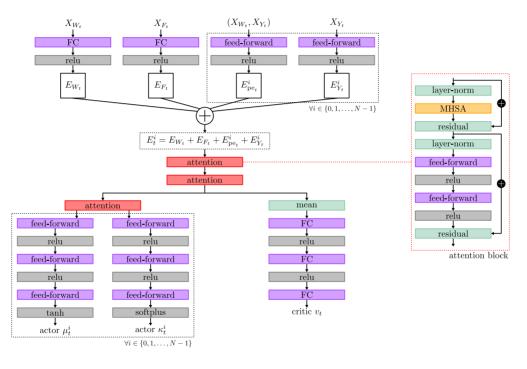
$$s_t = (X_{W_t}, X_{F_t}, X_{Y_t})$$

- X_W, current wind data (noisy).
- X_{F_*} wind forecast (noisy).
- X_Y, yaw angles.



Sample efficiency improvement

Attention-based neural network architecture



Training

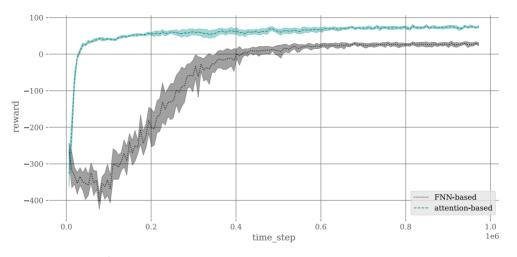
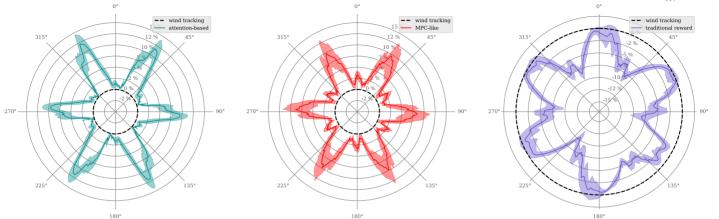


Figure: training curves of each model for 10 different seeds.

* The attention-based model requires \approx 10 times fewer simulation steps than the FNN-based model and it reaches superior performance.

Testing



- Figure: attention-based model.
- Figure: MPC-like solution.

- Figure: traditional reward.
- * The attention-based model achieves performance comparable to the MPC-like solution, but with lower variance and higher gains.
- * When using the traditional reward, the attention-based model completely fails to learn a wake steering strategy.

