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Wind farm flow control
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Problem definition
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Existing methods
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Data-driven, model-free.
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Reinforcement learning limitations
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Generalization issue
Bad reward shaping
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Baseline wake losses Li = 55.03 %. Baseline wake losses L: = 00.03 %.
Baseline power output Py = 5.65 Mw. Baseline power output Py = 12.55 Mw.
Theoretical maximum &(V¢) = 12.56 Mw. Theoretical maximum &(V¢) = 12.56 Mw.
Optimal reward: close to 0.5. Optimal reward: close to 1.
Wake steering is optimal. Wind tracking is optimal.

The policy learns a wind tracking solution, and it is enough to get high rewards.
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Generalization improvement
Better reward shaping
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v

x” restrict Ap, when v
penalize policies below baseline it is supposed to be high encourage policies above baseline
(strong wake conditions)
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Sample efficiency issue
Fully-connected neural network architecture
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Xw,, XF,, Xy,
|

XNp

St = (XWt ? XFt ? XYt)
e Xy, current wind data (noisy).

e X;, wind forecast (noisy).
e Xy, yaw angles.

critic vy

actor [iy actor K¢
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Sample efficiency improvement
Attention-based neural network architecture
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Training
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Figure: training curves of each model for 10 different seeds.

* The attention-based model requires ~ 10 times fewer simulation steps than the
FNN-based model and it reaches superior performance.
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Testing
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Figure: attention-based model.
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Figure: MPC-like solution.
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Figure: traditional reward.

* The attention-based model achieves performance comparable to the MPC-like solu-
tion, but with lower variance and higher gains.

* When using the traditional reward, the attention-based model completely fails to

learn a wake steering strategy.

Elie KADOCHE

Tackling Climate Change with Machine Learning: workshop at NeurIPS 2025

December 7, 2025 | 11/12

URAL INFORMATION
PROCESSING SYSTEMS



Elie KADOCHE | Tackling Climate Change with Machine Learning: workshop at NeurIPS 2025 | December 7, 2025 | 12/12



