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Wind farm flow control
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Local velocities Power outputs

v0 = 6.97 m/s P0 = 4.19 MW

v1 = 4.12 m/s P1 = 0.70 MW

v2 = 4.26 m/s P2 = 0.76 MW

Total power = 5.65 MW.
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Local velocities Power outputs

v0 = 6.97 m/s P0 = 3.71 MW

v1 = 4.92 m/s P1 = 1.27 MW

v2 = 5.07 m/s P2 = 1.47 MW

Total power = 6.45 MW.
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Problem definition
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Existing methods
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Myopic control
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Simplistic approach.

Predictive control
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Model dependent.

Reinforcement learning

max
θ

E
πθ

 ∞∑
k=0

γkrt+k+1


πθ(st) = (µ̄t, κ̄t,vt)

ait ∼ von Mises(µit,κit)

Data-driven, model-free.
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Reinforcement learning limitations

Generalization
Current RL methods only focus on
limited sets of wind conditions.

Sample efficiency
Training a model requires a
large number of simulations.
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Generalization issue
Bad reward shaping

rt+1 =
1

N

N−1∑
i=0

Pit
Φ(Vt)

Baseline wake losses L̄t = 55.03 %.
Baseline power output P̄t = 5.65 MW.
Theoretical maximum Φ(Vt) = 12.56 MW.

Optimal reward: close to 0.5.
Wake steering is optimal.

Baseline wake losses L̄t = 00.03 %.
Baseline power output P̄t = 12.55 MW.
Theoretical maximum Φ(Vt) = 12.56 MW.

Optimal reward: close to 1.
Wind tracking is optimal.

The policy learns a wind tracking solution, and it is enough to get high rewards.
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Generalization improvement
Better reward shaping
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Sample efficiency issue
Fully-connected neural network architecture

st = (XWt,XFt,XYt)

• XWt current wind data (noisy).
• XFt wind forecast (noisy).
• XYt yaw angles.

Elie KADOCHE | Tackling Climate Change with Machine Learning: workshop at NeurIPS 2025 | December 7, 2025 | 8/12



Sample efficiency improvement
Attention-based neural network architecture
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Training

Figure: training curves of each model for 10 different seeds.

* The attention-based model requires ≈ 10 times fewer simulation steps than the
FNN-based model and it reaches superior performance.
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Testing

Figure: attention-based model. Figure: MPC-like solution. Figure: traditional reward.

* The attention-based model achieves performance comparable to the MPC-like solu-
tion, but with lower variance and higher gains.

* When using the traditional reward, the attention-based model completely fails to
learn a wake steering strategy.
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