Helping mitigate climate change through efficient reinforcement
learning-based wind farm flow control
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1) Wind farm flow control
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rotational constraints

2) Generalization

ISSUE — current RL methods only focus on limited sets of wind conditions.
CAUSE — bad reward shaping (unbalanced across wind conditions).
SOLUTION — better reward shaping (balanced across wind conditions).
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Optimal reward: close to 0.5. Optimal reward: close to 1. (strong wake conditions)
i 5 More balanced reward (our contribution).

The policy learns a wind tracking solution, and 1t 1s enough to get high rewards.

3) Sample efficiency

ISSUE — training a model requires a large number of simulations.
CAUSE — fully-connected neural network architecture.
SOLUTION — attention-based neural network architecture.
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Attention-based model (our contribution).
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Training each model for 10 different seeds. Testing: attention-based model. Testing: MPC-like solution. Testing: traditional reward.

* The attention-based model requires =~ 10 times fewer simulation steps than the FNN-based model and 1t reaches superior performance.
* The attention-based model achieves performance comparable to the MPC-1like solution, but with lower variance and higher gains.
* When using the traditional reward, the attention-based model completely fails to learn a wake steering strategy.



