

Integrating Flood Susceptibility and Deforestation Mapping for Climate Vulnerability Assessment: A Geospatial and Al-Based Approach.

Authors: Serah Akojenu, Chinazo Anebelundu, Godwin Adegbeingbe, Olamide Shogbamu, Blessing Gideon, Tochuckwu Abia, Anthony Soronnadi, and Olubayo Adekanmbi.

Climate Change AI Workshop, Neural Information processing Systems (Neurips, 2025)

Problem Statement

- The global climate system has intensified floods and droughts, the most destructive climate-induced disasters worldwide.
- In Nigeria, floods causes 80% of natural disasters while droughts pose severe risks to food security.

Figure 1: Image of drought and flood occurrences in Nigeria.

Introduction Cont'd

A geospatial approach is essential because these climate hazards are inherently location-based, requiring precise identification of vulnerable areas to provide better insights for targeted decision-making and resource allocation.

Related Papers

Table 1: Related Literature

Citation	Title of Paper	Paper Summary
		This review examines the state-of-the-art use of Geographic Information
Tastassia A Kalanassassida K	Conjustamentian tankanlarian in sunanant af	Systems (GIS), Remote Sensing (RS), and spatial data analysis tools for
Tsatsaris, A., Kalogeropoulos, K.,	= ::	monitoring and managing various geo-hazards, including floods and droughts,
Stathopoulos, N., Louka, P., Tsanakas, K.,	·	y ,
Tsesmelis, D. E., & Chalkias, C. (2021)	. change: An extensive review.	information to support environmental monitoring and policy
		This study developed a flood susceptibility map for the nation using GIS and
		two machine learning models: Artificial Neural Network (ANN) and Logistic
Ghile, E. H., Shirakawa, H., & Tanikawa, H.	Application of GIS and Machine Learning to Predict Flood	, , ,
(2022).	Areas in Nigeria.	1 9 1 7
	_	
		This paper focuses specifically on using advanced machine learning models
	Machine Leavine David Durinkt Bradistica Heinetha	(Random Forest, XGBoost) to predict meteorological drought in a critical
Eguagia suni D. Dada D. 9 Okaghua E C	Machine Learning Based Drought Prediction Using the	, , , , ,
Eguagie-suyi, P., Dada, B., & Okogbue, E. C.	· · · · · · · · · · · · · · · · · · ·	Evapotranspiration Index (SPEI). It found that Random Forest models achieved
(2025).	. (SPEI) in Kebbi State, Nigeria.	the highest prediction accuracy. Relevance to :

Methodology

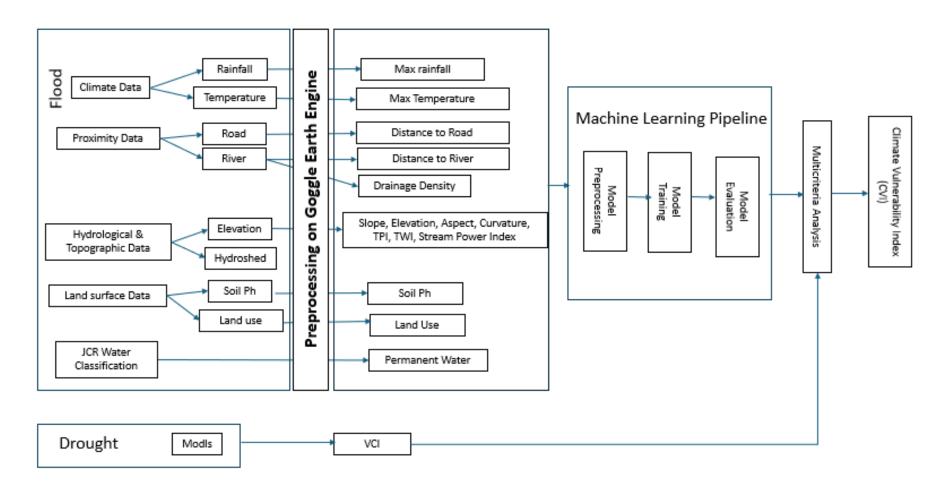


Figure 2: Methodology Flowchart

Methodology Cont'd

Datasets

Table 2: Summary of geospatial datasets used in the study

Group	Dataset	Source	Observation period /	Format	Spatial resolu-
			Last Updated		tion
Climate data	Rainfall	CHIRPS daily raster	2019 to 2024	Raster	5566 meters
	Temperature	TerraClimate	2019 to 2024	Raster	4638.3 meters
Proximity data Roads		DivaGIS	April 2025	Shapefile	-
	Rivers	DivaGIS	April 2025	Shapefile	-
Hydrologic & Topo-	Elevation	Shuttle Radar Topography	2020	Raster	30 meters
graphic data	aphic data				
	HydroSHEDS		2020	Raster	463.83 meters
		Accumulation			
Land surface data NDVI		Modis Data	2018 to present	Raster	201 meters
	Soil pH	OpenLandMap	2018	Raster	250 meters
	Land Use	ESA WorldCover 10m v100	2021	Raster	10 meters
Administrative bound-	Admin boundary	DivaGIS	April 2025	Shapefile	-
ary data (country, state, local)					
Surface water data Surface water		JRC Yearly Water Classifi-	2022	Raster	30 meters
		cation History			

Methodology Cont'd

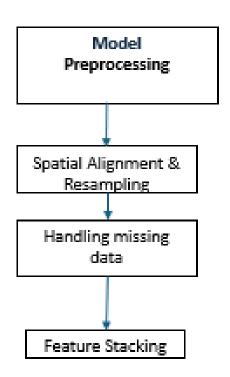


Figure 3: Flood dataset preprocessing for model training.

Result and Discussion.

Random Forest model had the highest AUC

Table 3: Comparative Model Performance using Area Under Curve (AUC)

Model	Area Under Curve (AUC)		
Random Forest	0.85		
XGBoost	0.79		
LightGBM	0.76		

Result and Discussion Cont'd

Elevation, rainfall, and temperature are the top contributors to flooding.

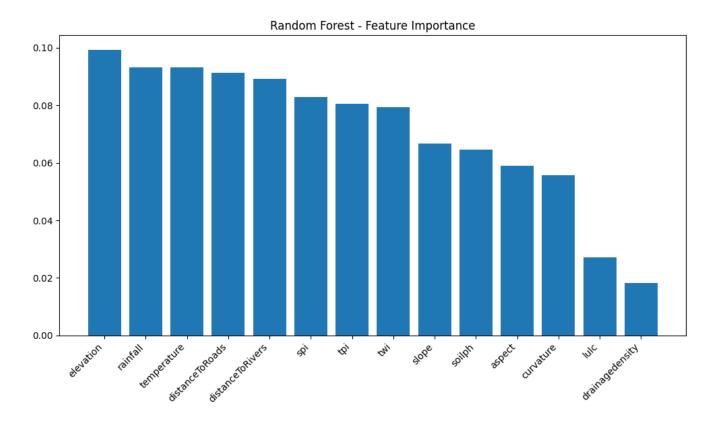


Figure 4: Feature importance for Random Forest

Result and Discussion Cont'd

States in the Northeastern and central parts regions exhibit the highest climate vulnerability index.

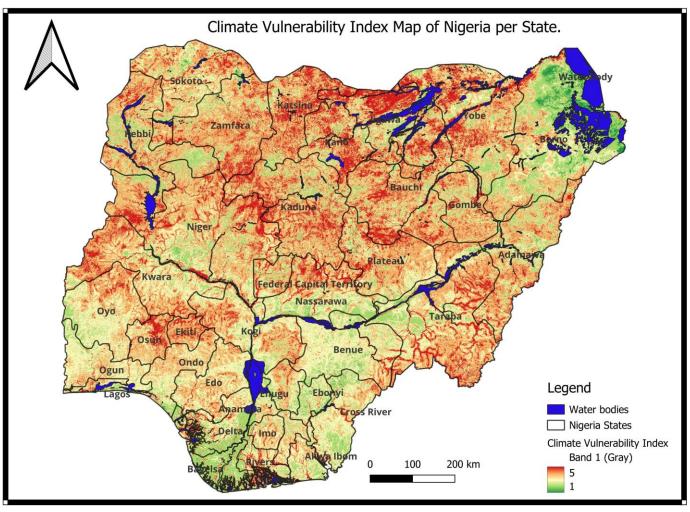


Figure 5: Climate Vulnerability Index map of Nigeria, per State.

Conclusion

We successfully developed the Climate Vulnerability Index (CVI) by integrating flood and drought risk assessments using Google Earth Engine (GEE) and artificial intelligence. This innovation provides valuable insights for decision-makers and investors, enabling them to identify priority areas and strategically channel resources for effective emergency response and resilience planning.

Thank You

- Data Science Nigeria
- 🛅 DSNai Data Science Nigeria
- O Dsn_ai_network
- DSNai_Data Science Nigeria/
 Data Scientists Network
- www.datasciencenigeria.org
- www.dsn.foundation

