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Abstract

Climate change has intensified global natural disasters, with floods and droughts
posing the greatest threats to human settlements and economic systems. In Nigeria
alone, flooding causes 80% of climate-induced deaths and inflicts catastrophic
economic losses of 60 billion dollars annually, while persistent drought threatens
the food security of millions in northern regions, which contribute significantly
to the food consumed across the country. Despite these devastating impacts,
existing machine learning disaster prediction studies focus on single hazards with
limited scope and insufficient risk indicator integration, leaving communities
vulnerable and unprepared. This study addresses this critical research gap by
developing a comprehensive Climate Vulnerability Index (CVI) that integrates flood
susceptibility and drought risk mapping across Nigeria using advanced Random
Forest, XGBoost, and Light GBM algorithms with multi-criteria decision analysis.
This framework represents a shift from fragmented, single-hazard approaches to a
unified, multi-hazard assessment system that incorporates diverse risk indicators,
creating a scalable tool essential for protecting lives and economic stability at
national, state, and local levels.

Tackling Climate Change with Machine Learning: workshop at NeurIPS 2025.



1 Introduction

The global climate system has undergone unprecedented changes, fundamentally altering natural
disaster patterns and creating cascading impacts on societal stability, economic security, and ecological
integrity [1]. Among climate-induced disasters, floods and droughts represent the most devastating
threats, with floods accounting for 47% of weather-related disasters, affecting over 250 million people
annually and causing hundreds of billions in economic losses [2]]. Nigeria exemplifies acute climate
vulnerability as Africa’s most populous country with over 220 million inhabitants experiencing
severe climate-related disasters. Flooding represents 80% of all natural disasters in Nigeria [3],
displacing millions, destroying infrastructure, contaminating water resources, and creating disease
outbreak conditions [4}/5]. Simultaneously, northern regions face increasing drought stress threatening
agricultural productivity and food security, with high temperatures and irregular rainfall disrupting
crop cycles and creating interconnected risks for rural communities [6]. This dual flood-drought threat
represents a critical vulnerability requiring comprehensive assessment and prediction capabilities
[7]. This study addresses these gaps by developing an automated preprocessing framework using
Google Earth Engine and integrating comprehensive flood risk indicators with drought indices to
create a unified Climate Vulnerability Index (CVI) that maps combined flood and drought risks across
Nigeria.

2 Literature Review

Machine learning (ML) classifiers like Random Forest (RF), Support Vector Machine (SVM), and
XGBoost have been increasingly used for flood susceptibility mapping due to their ability to handle
high-dimensional, nonlinear data, with RF showing particular robustness through interpretability
[8l]. Nigerian studies have employed various approaches: Ghile et al., 2022 used ANN and logistic
regression with fifteen indicators (elevation, slope, rainfall, soil type, land cover, etc.) demonstrating
ANN’s effectiveness for flood prediction [9]], while North Central Nigeria studies found GBM reliable
for flood predictions and ensemble models efficient for the region [10]. For drought prediction, [11]]
used SPEI with meteorological parameters to train RF, XGB, CNN, and LSTM models over four
decades, with XGB showing early warning potential.A study also combined AHP with RF using four
predictors (elevation, slope, rainfall, distance to river) to create a Flood Susceptibility Index, though
this approach was limited by excluding variables like soil type and infrastructure proximity. Despite
ML advances, the "black-box" problem has led to hybrid approaches integrating ML with expert
frameworks like Analytic Hierarchy Process (AHP), which allows systematic weight assignment
based on domain knowledge [8]]. However, most Nigerian flood susceptibility studies remain limited
to specific regions and rely solely on ML or deterministic modeling. The reviewed studies reveal
gaps in indicator comprehensiveness and multi-criteria analysis application, highlighting the need for
approaches that incorporate diverse risk indicators and integrate flood-drought indices into unified
vulnerability assessments.
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Figure 1: Methodology flowchart



3 Methodology

3.1 Data Collection

Group Dataset Source Observation period / | Format Spatial resolu-
Last Updated tion
Climate data Rainfall CHIRPS daily raster 2019 to 2024 Raster 5566 meters
Temperature TerraClimate 2019 to 2024 Raster 4638.3 meters
Proximity data Roads DivaGIS April 2025 Shapefile -
Rivers DivaGIS April 2025 Shapefile -
Hydrologic & Topo- | Elevation Shuttle Radar Topography | 2020 Raster 30 meters
graphic data Mission (SRTM)
HydroSHEDS WWF HydroSHEDS Flow | 2020 Raster 463.83 meters
Accumulation
Land surface data NDVI Modis Data 2018 to present Raster 201 meters
Soil pH OpenLandMap 2018 Raster 250 meters
Land Use ESA WorldCover 10m v100 | 2021 Raster 10 meters
Administrative bound- | Admin boundary | DivaGIS April 2025 Shapefile -
ary data (country, state, local)
Surface water data Surface water JRC Yearly Water Classifi- | 2022 Raster 30 meters
cation History

Table 1: Summary of geospatial datasets used in the study

3.1.1 Preprocessing in Google Earth Engine

The preprocessing done in Google Earth Engine can be divided into 3 parts namely;

Indices Calculation: The MODIS dataset was used to calculate the Vegetation Condition Index
(VCI), which served as the indicator used for the mapping of drought.

Feature Derivation and Spatial Analysis: Several spatial features were derived for this analysis.
The JRC Surface Water dataset was masked to extract permanent water bodies, which were used to
assess flood history by applying a threshold of 50% water occurrence to identify areas consistently
inundated. From the elevation dataset, multiple topographic parameters were derived, including
elevation, slope, aspect, curvature, topographic wetness index (TWI), topographic position index
(TPI), and stream power index (SPI). The flow accumulation layer was further processed to calculate
drainage density. Additionally, proximity analyses were carried out using the Euclidean distance
method to generate distance-to-road and distance-to-river maps, with a 100 km maximum search
radius applied to ensure adequate visibility at the national scale.

Furthermore, rainfall and temperature datasets were used to produce maps of maximum temperature
and rainfall distribution. The land use dataset was filtered to retain five key classes of interest: built-up
areas, water bodies, vegetation, farmlands, and croplands. While the soil pH dataset was incorporated
without modification. Upon completion of the preprocessing phase, all derived maps were exported
as GeoTIFF files to serve as spatial predictor variables in the flood modeling pipeline.

3.2 Machine Learning Pipeline for Flood Prediction

Following the preprocessing stage, a machine learning pipeline was developed to predict flood
vulnerability across Nigeria.

3.2.1 Data Preprocessing for Model Training

All predictors and the target variable (permanent water) were exported as GeoTIFF raster layers.
These layers were ingested into Python and read using rasterio, which converted them into matrices.
To ensure consistency in spatial resolution and alignment, each raster was resampled and reshaped to
match a common reference grid (based on the elevation layer). Missing or undefined pixel values
were replaced by interpolation to preserve more pixel values and a stratified 70/30 split for training
and testing, preserving the proportion of flood vs. non-flood observations.

3.2.2 Model Training

Three machine learning models - Random Forest (RF), Extreme Gradient Boosting (XGBoost), and
Light Gradient Boosting Machine (LightGBM) were implemented to classify flood susceptibility
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Figure 2: Flood dataset preprocessing workflow for model training.

based on the input features. All models were trained using 70% for training and the remaining 30%
for evaluation. Prior to training, the target variable was rounded and converted to binary integers, Os
and 1s. Each model was configured with 100 estimators and trained using tuned hyperparameters
specific to each algorithm, with the appropriate objective parameter defined for the Light GBM model
to handle binary classification. The probabilistic output for the RandomForest model was retained
because it gave the best performance, as seen in Table[2]

3.2.3 Evaluation

The performance of the Random Forest, XGBoost, and LightGBM classifiers was evaluated using the
Receiver Operating Characteristic (ROC) curve, which plots the true positive rate (TPR) against the
false positive rate (FPR) at various classification thresholds. The ROC curves were generated using
the predicted probabilities (yprob) from each model, providing a visual and quantitative measure of
their ability to distinguish between flood-prone and non-flood-prone areas.

3.3 Multicriteria Analysis

A multicriteria analysis was conducted in QGIS for the two disasters using a weighted overlay of
flood and drought vulnerability layers, assigned a 60:40 ratio to emphasize flooding due to its higher
prevalence across Nigeria. This process produced the Climate Vulnerability Index (CVI) map for
the entire country. The final output was subsequently reclassified into five categories (15), with 5
indicating the highest level of vulnerability and 1 representing the lowest.

4 Results and Discussion

The evaluation of the three classification models as seen in (tabld2)) showed that Random Forest (RF)
achieved the highest performance, yielding an Area Under the Curve (AUC) of 0.85, which confirmed
its robustness in predicting flood susceptibility across Nigeria, outperforming both XGBoost (0.79)
and LightGBM (0.76). The feature importance as seen in (figure ) revealed that elevation, rainfall,
temperature, and proximity to roads and rivers were the most influential geospatial predictors of
flooding. The resulting climate vulnerability index(CVI) map, as seen in (figure[3)) indicated that
states in the northeastern and central regions exhibit the highest climate vulnerability, consistent with
areas frequently impacted by both extreme weather events and persistent drought stress.

Table 2: Model Performance Comparison based on AUC

Model Area Under Curve (AUC)
Random Forest 0.85
XGBoost 0.79
LightGBM 0.76
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Figure 3: Climate Vulnerability Index Map of Nigeria

5 Conclusion

This study demonstrated the effectiveness of integrating geospatial datasets and machine learning,
with Random Forest achieving the highest accuracy in mapping climate vulnerability across Nigeria
and identifying hotspot regions most at risk. The findings support SDG 13 (Climate Action), SDG
11 (Sustainable Cities and Communities), and SDG 2 (Zero Hunger) by providing evidence-based
insights to guide adaptation strategies, risk-informed planning, and climate-resilient interventions.
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6 Apendix

Random Forest - Feature Importance

Figure 4: Feature importance of the Random Forest model
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