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Abstract

Sensitivity analysis is a cornerstone of climate science, essential for understanding
phenomena ranging from storm intensity to long-term climate feedbacks. However,
computing these sensitivities using traditional physical models is often prohibitively
expensive in terms of both computation and development time. While modern
Al-based generative models are orders of magnitude faster to evaluate, computing
sensitivities with them remains a significant bottleneck. This work addresses
this challenge by applying the adjoint state method for calculating gradients in
generative flow models. We apply this method to the cBottle generative model,
trained on ERAS and ICON data, to perform sensitivity analysis of any atmospheric
variable with respect to sea surface temperatures. We quantitatively validate
the computed sensitivities against the model’s own outputs. Our results provide
initial evidence that this approach can produce reliable gradients, reducing the
computational cost of sensitivity analysis from weeks on a supercomputer with
a physical model to hours on a GPU, thereby simplifying a critical workflow in
climate science. The code can be found at https://github.com/Kwartz18/
cbottle_adjoint_sensitivity.

1 Introduction

Sensitivity analysis is widely applied throughout climate science, e.g. for investigating the drivers of
storms [[1], the importance of observations [2] or understanding climate feedbacks [3} 4]]. However,
conducting sensitivity analysis with classical physical simulation models is prohibitively expensive,
relying either on deriving and implementing adjoints by hand [3, |6} [7]] or running finite difference
approximations [3]]. For example, a standard approach for estimating the response of the atmosphere
to spatial changes in temperature fields relies on Green’s function method which requires executing
an expensive General Circulation Model (GCM) for thousands of model years which can take weeks,
even on a supercomputer [8} (9,10} [11} 12} 13} 4].

Recently, there has been an explosion of development of large AI models for weather and climate.
While expensive to train, they are significantly faster and differentiable by default, warranting an
investigation into their potential to simplify the sensitivity analysis workflow. Modern AI models
are developed in frameworks like PyTorch [13] and JAX [[14], which are equipped with automatic
differentiation (AD) engines [15]. Consequently, obtaining the gradient of any scalar quantity derived
from the model’s output with respect to any model input only requires a single function call to the
AD engine, which has motivated their use for initial condition sensitivity studies [ 16} 17].
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Figure 1: Left. An illustration of obtaining the sensitivity % with the adjoint method. The velocity
network ug (X4, ¢, c) turns the clean vector Xy into a scaled noise latent X1. As uy is steered by
conditioning c throughout the reverse sampling process, we need a variable w; which accumulates the
gradient from all noise levels. The gradient accumulator depends on the adjoint a; = 88—)30 g§2 , which
expresses the sensitivity of ¢ with respect to a partially noised vector X;. Integrating their respective
ODEs together yields % = wr. Right. Net global radiation flux sensitivity to SST obtained from
cBottle, averaged over historical AMIP SST 1971-2020.

Notably, flow and diffusion models [18} 19,20, [21] have gained popularity in weather and climate
due to their powerful generative properties and their ability to model uncertainty. Diffusion models
have demonstrated state-of-the-art results in weather forecasting [22] and are able to reproduce
atmospheric states [23]]. The method presented in this paper provides a way to extract gradients from
these types of models, reducing the cost of sensitivity analysis from days to weeks on a supercomputer
to minutes or hours on a GPU. However, it is not as clear if these models can produce informative
gradients even if they provide a good fit to the data. To begin the work of evaluating their quality, this
paper introduces a method of extracting gradients from flow models and checking their consistency
with model predictions through finite differences.

2 Background and notation

Climate in a Bottle. The experiments in this work are done with the simplest Climate in a Bottle
diffusion model [23] (henceforth called cBottle). Given the day of year 7, second of day (, sea surface
temperature forcing c, and a high dimensional random vector &, the cBottle model generates 45
atmospheric variables (4 3D-variables at 8 pressure levels and 13 2D-variables) at a ground resolution
of ~ 100 km. See App. [C|for details. cBottle has been trained on both ERA5 reanalysis data [24]
and outputs from the ICON climate model [25]], providing a unique test-bed for gradient extraction
methods. While the empirical results are computed with cBottle, the method presented here is not
specific to cBottle and applies to generative flow models in general.

Flow models. Diffusion models [18} 19} 20], and the more recent flow matching [21} 26} [27]] are
all special cases of flow models, a family of generative models which learn a time-varying velocity
field ug (X, t) that transports an easy-to-sample probability distribution p;,;: to a data probability
distribution pg,¢,. In what follows, we will use the parameterization of the Elucidated Diffusion
Model (EDM) [28]] with deterministic sampling.

Conditioning. Flow models can be guided by input variables ¢ to sample from the conditional
distribution pga, (+|¢) [29,[30} 31]). Therefore, the procedure for generation implies sampling £ from
the standard Gaussian, picking a conditioning variable ¢ and solving the ODE

dX; = ug(Xy,t,c)dt, with X7 = T¢ and € ~ N (0,1d)

backwards in time, from T to 0, obtaining the generated sample X ~ pgata (+]¢).
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Figure 2: Left. A sensitivity map % on February 1st 2020, at 17:30 UTC. Here, q is the average
outgoing shortwave radiation in the green patch /. Right. The top plot shows how ¢ changes
over the course of two months, and the extracted gradients. The bottom plot shows the true finite
difference 0¢ and the linearized difference o - dSST, see equation [3| The RMSE (equation

ISST
between the two is 0.76 Wm™2.

3 Method

We are interested in a scalar quantity derived from a generated sample g(X() and how this quantity
varies with conditioning %. For example, in the context of cBottle, ¢ can be net outgoing radiation
globally, precipitation on the coast of Peru or wind shear in the tropical Pacific, and c is global sea
surface temperatures. As flow models have very deep computational graphs due to the recurrent
calls to the model, it is not feasible to simply use AD to obtain this derivative. We first write down a
continuous counterpart of the chain-rule

dq 9q 90Xy 9q [°OX,dug

9 " 90Xy dc Xy )y OX, Bc Aot

The key step is to use the adjoint state a;, = 99 9Xo which satisfies the ODE

90X, 0X:°
d GUQ
—a; = —Qp——.
dt " YoX,
Lett' _ t % . . @ _ 0Xo _ .
ing wr_y = fT as %52 ds we see the desired result is 9e = 05t = wr. Solving the system of
ODEs
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from 0 to T yields % = wr. The process is depicted in Figure |1} and proofs can be found in

(32,133, 134].

4 Results with Climate in a Bottle

We conduct our experiments with cBottle, a diffusion model of the EDM type [28]]. It can be easily
reparameterized as a flow model dX; = ug(Xy,t, ¢, 7, ¢)dt, with X = T¢ and £ ~ N (0,1d) via
the probability flow ODE [20]. The conditioning variables are ¢ — sea surface temperature (SST)
forcing, 7 — day of the year and { — UTC second of day. We generate samples from scratch given the
conditioning and a randomly drawn noise sample, and then we apply the adjoint sensitivity algorithm
with the same conditioning. For the gradient self-consistency checks, we keep the noise samples &
constant.

Gradient self-consistency check. The approximate nature of the flow model mapping from c to X
means the reliability of its gradients is not immediately clear. While the model’s outputs are typically
validated for consistency against real-world data or physical models [23], the trustworthiness of the
gradients is commonly not assessed. We bridge this gap by proposing a self-consistency check that



validates the model’s gradients against its own outputs, thereby using the validation of the predictive
samples to establish confidence in the model gradients. Figure 2]shows the gradient self-consistency
check procedure for a selected quantity g chosen to be the average outgoing shortwave radiation 15"
in a small area in the north Atlantic. The gradients obtained through the adjoint sensitivity method
seem consistent with cBottle’s outputs. To quantify this, we define a simple RMSE metric over K
samples, following [3]:

B 1 dq 2
RMSE = K;((Sq—dc-éc) , )

where the total linearized difference is obtained by the chain rule:

d 00 0ug 0
i oc = e 5c+a7_67+8<5g. 3)

The derivatives with respect to the other conditioning variables are simply obtained by setting up
gradient accumulators for each one, see Appendix [A]for details.

The sensitivity of global net radiative flux with respect to SST patterns. While the gradient
self-consistency check confirms the correctness of the algorithm, it does not guarantee physical
meaning. To test this, we follow [3] (henceforth called GFMIP) and calculate the sensitivity of

average global net radiative flux with respect to SST %, averaged over K = 2536 samples of SST
in the AMIP dataset from 1971-2020. For this run, the noise latent & was sampled from the standard
Gaussian. The timestep was set to 169 h, which is 1 week and 1 hour, to uniformly sample the two
time conditioning variables in cBottle, 7 and (. The resulting sensitivity map is presented in the
right panel of Figure 1 The RMSE for the entire period is 0.465 Wm ™2, and if we take the RMSE
of the yearly averaged differences like in GFMIP, we get 0.07 Wm ™2, which is close to their value,
0.23 Wm 2. GFMIP do not have high spatial frequencies like ours, but this is to be expected because
the patch perturbations used are much larger than the ~ 100 km pixels in cBottle and they smooth
out the pattern. There are clear negative feedbacks around the Maritime Continent, which might be
explained by an increase in convective clouds and thus reduced outgoing long-wave radiation. A
faint ring-shaped negative signal around the Antarctic ice-sheet can also be observed, which can be
explained by a decrease in global albedo caused by ice-sheet melting. However, the sensitivity in the
Pacific is 1-2 orders of magnitude larger than in GFMIP, even as the signals in the other oceans are
around the same order of magnitude.

5 Discussion and future work

Limitations. In the case of the sensitivity of global net radiation with respect to SST patterns, the
large departure from previous results warrants further investigation. It is possible that cBottle’s
outputs are very strongly conditioned on the day of year 7, which implies that simply averaging

% is not the full picture and the procedure described in Appendix |A{must be followed to add the

contribution of the g—z gradients.

It must also be said that there is no guarantee cBottle produces physical atmospheres for out-of-
distribution SST values (for example +2 K). In fact, we noticed tiling artifacts appearing for gradients
with respect to climatology SST when trying to recreate GFMIP’s results.

Future work. A promising avenue for greatly extending the applications of this method is model
guidance. To condition the model to generate desired weather states from the exact posterior (for
example, show a realistic hurricane in the Atlantic), we can train a separate model [29, |30} 31]] that
uses a guiding variable y = G(Xy), where G is an observation operator. Gradients with respect to
y can then be pulled through the small guiding model. This method would allow calculations of
gradients of anything with respect to anything, including variables not included in the original model,
for example CO5 concentrations, aerosol optical depths or ocean salinity.
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A Getting total derivatives with the adjoint sensitivity method

In the case in which the inputs to the flow model are dependent on each other, as is the case with
cBottle’s forcing SSTs ¢ and day of year 7, we might be interested in total derivatives, in addition
to the partial derivatives obtainable through the adjoint sensitivity method. To reiterate, obtaining
partial derivatives (from a velocity-reparameterized EDM) with the adjoint sensitivity method implies
solving the system of ODEs

Xt u%u X() XO
E ag _ —ay¢ aXi with ap _ 3%?0
dt |we —ay e | wo 0
Ut —ay % Vo 0
9q 9q

fromt = 0tot =T, where wr = 5% and v = %Z. In practice, calculating the additional derivative

dc or

% adds negligible computational cost, as the backpropagation process through the computational
graph happens the same way and with the same starting tangent —a;. Any input of the model can be
added to the ODE this way. The total derivative is then

dy _0q g

_
dc _0c T 9roc  wrtiry:

To approximate %, one could train a regressor and get this gradient with an AD call.
For calculating the RMSE on historical data this is not needed, as we have both éc and 67:

dg _ Oq dq Ot N
P oc = 9 5c+87'8c oc ~ wr - 6c+ vroT.

B More sensitivity maps

See Figurefor monthly sensitivity maps, each one averaged over K /12 ~ 211 samples.

C cBottle details

C.1 Generated variables

See Table



Month: 1 Month: 2 Month: 3
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Month: 4 Month: 5 Month: 6
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Figure 3: Monthly averaged sensitivity maps aaTng in the period 1971-2020.

C.2 The nature of SST conditioning data

Climate in a Bottle is using one of its conditioning variables, the day of year 7, to
obtain the sea surface temperature forcing ¢(7). This procedure is mentioned but not
detailed in their paper, and so we will describe here. = They use the AMIP dataset
input4MIPs.CMIP6P1lus.CMIP.PCMDI.PCMDI-AMIP-1-1-9.0cean.mon.tosbcs.g which can
be downloaded with a script from here. This dataset contains the estimated global mid-month,
monthly mean SST from January 1870 to December 2022, all dated on the 16th of the month (except
February, which has the 15th). If the model is given a day of year 7, ¢(7) is linearly interpolated from
the nearest two data points:

T —T;

o(t) =c(m) + (e(Tig1) — (7)),

Ti+1 — T4
where 7; is the mid-month day-of-year of month ¢ and 7 satisfies 7; <7 < 7,41 < 7+ 31.

For simplicity, we have maintained that 7 is the day of the year, but it would be more precise to say it
is the day of the year plus the day fraction: 7 = 1.5 means January 1st 12:00 UTC.


https://esgf.ceda.ac.uk/thredds/dodsC/esg_cmip6/input4MIPs/CMIP6Plus/CMIP/PCMDI/PCMDI-AMIP-1-1-9/ocean/mon/tosbcs/gn/v20230512/tosbcs_input4MIPs_SSTsAndSeaIce_CMIP_PCMDI-AMIP-1-1-9_gn_187001-202212.nc

Short name Description Units
Profile variables @ 1000, 850, 700, 500, 300, 200, 50, 10 hPa

T air temperature (profile) K
U zonal wind (profile) ms~!
v meridional wind (profile) ms~!
Z geopotential height m

2D variables
clivi column integrated cloud ice kgm~—?2
cllvi column integrated cloud water kgm™2
rlut TOA outgoing longwave radiation Wm2
rsut TOA outgoing shortwave radiation Wm~2
rsds surface downwelling shortwave radiation W m™—2
tcwv column integrated water vapour kgm—?2
pr precipitation flux kgm~2s7!
pres_msl mean sea level pressure Pa
sic sea ice concentration (fractional) -
sst sea surface temperature K
tas 2m air temperature K
uas zonal wind at 10m ms!
vas meridional wind at 10m ms~!

Table 1: Variables grouped into profile, column, and surface categories with their ICON names,
descriptions, and units.
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