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1. PREDICTING HURRICANE INTENSIFICATION 4. RETRIEVAL OF MICROPHYSICAL PROPERTIES

Motivation: Numerical weather predictions struggle to accurately predict which
cyclones will intensify and underperform on rapid intensification. Predicting
tropical cyclone (TC)intensity is difficult for many reasons, including...
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Data: Currently, satellites capture cyclones from atop (geostationary imagery) and
with thin profiles(e.g. CloudSat & EarthCARE) with global coverage every 16 days.
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Proposition: Continuous/global modeling of 3D microphysical properties to help
better understand TC intensification and improve early warnings.

2. DATASETS FOR CLOUDS & TROPICAL CYCLONES

Input data: Geostationary weather satellites (GOES-16, MSG, Himawari-8) provide
visible and IR imagery (11-16 channels) at moderate resolution (2-3 km) with high
temporal frequency (10-15 minutes). CloudSat provides vertical profiles of cloud
properties using W-band (94 Ghz) radar. The international best track archive for
climate stewardship (IBTrACS) provides trajectories of historical tropical cyclones.
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Fig. 1: Training set components. (a) Pre-training: Geostationary satellite images of
1024x1024 pixels, randomly cropped to 256x256 during training. (b) Fine-tuning:
Aligned pairs of geostationary imagery and CloudSat profiles of cloud properties.
(c) Evaluation dataset for tropical cyclones: Aligned geostationary image/CloudSat
profile pairs that pass within 256 km of the centre of an active tropical cyclone.

3. MODEL & TRAINING
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(b) Fine-Tuning: A Multi-Variable 3D Model
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Fig. 2: SWinSatMAE. To create a consistent model input, the 11-closest channels
from different sensors are matched. (a) Pre-training: Learn cloud structures by re-
covering masked images. (b) Fine-tuning: Train a decoder to infer 3D microphysical
properties - radar reflectivity, ice water content, droplet effective radius.
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(c) 3D Droplet Effective Radius
Prediction - SwinSatMAE (pre-trained)

(b) 3D Ice Water Content
Prediction - SwinSatMAE (pre-trained)

(a) 3D Radar Reflectivity
Prediction - SwinSatMAE (pre-trained)
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Fig. 3: 3D reconstructions of (a) radar reflectivity, (b) ice water content, (c) droplet
effective radius by the SWinSatMAE model for TC Dorian. The geostationary image
from GOES channel 7 is shown under each 3D render, with the location of the
CloudSat track marked in red. Below it are the associated ClouSat retrievals along
the track and the predictions from the baseline model and the SWinSatMAE model.
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Fig. 4: Spatial distribution of the RMSE for the radar reflectivity (top), ice water
content (middle), and droplet effective radius (bottom), as predicted by the baseline
model (left) and the SWinSatMAE model (middle), along with their difference (right).

5. GLOBAL 3D RECONSTRUCTIONS

ISCCP-NG x 3D Clouds column max radar reflectivity 2020-08-26 18:00:00 UTC
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Fig. 5: The ISCCP-NG dataset combines imagery from 5 different geostationary
Meteosat-9, Himawari-8) to provide

near-global coverage on a 0.05° lat/lon grid. Applying SWinSaeMAE to this dataset
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~ enables the production of global, 3D retrievals of cloud properties, such as the

ST

= column maximum radar reflectivity shown above. The model can also be applied to

'L imagery from each individual satellite and then combined.
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