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Abstract

Separating forced climate change from internal climate variability is a fundamental
challenge in climate attribution. In the emerging field of extreme event attribution,
climate models are used to produce so-called ‘storyline simulations’ of climate
extreme events: those events are simulated under a constrained atmospheric cir-
culation in factual (=present-day) and counterfactual (=without anthropogenic
forcing) climate conditions in order to attribute the thermodynamic effects of
anthropogenic climate change. However, traditional approaches for producing
such circulation-conditioned counterfactuals are computationally costly, cannot
be directly transferred to observations, and cannot be easily transferred to other
climate conditions than the ones simulated. Here we show that deep learning
offers large potential to generate highly versatile climate counterfactuals: we use a
Variational Autoencoder to predict counterfactual European winter temperatures by
providing only the global mean warming level (i.e., the background climate) and
the atmospheric circulation state as inputs. The results are benchmarked against
traditional nudged-circulation climate model simulations. The deep learning based
counterfactuals are shown to perform extremely well and can be applied in any
background climate state, thus providing a versatile climate counterfactual gen-
erator. Future work could target counterfactual climate states based on observed
weather states. Accurate climate counterfactuals could strongly support climate
adaptation and communication efforts.

1 Introduction

Climate attribution aims to establish the causal drivers of observed changes in the climate system.
This requires separating effects that originate from outside of the climate system (externally forced)
and those of internal climate variability which exists due to the chaos in atmospheric dynamics [1].

Hence, a fundamental goal in climate attribution is to estimate how forced climate change contributed
to certain (extreme) weather events (as opposed to internal variability, for example). The so-called
‘storyline method’ [2] asks how a specific event would have unfolded in the absence of climate change.
Hence, it aims to compare an observed (‘factual’) climate event to a hypothetical, ‘counterfactual’
climate, that is without anthropogenic forcing (or a different level of forcing). It approaches this
question by comparing similar atmospheric dynamic conditions under different thermodynamic
(factual and counterfactual) climate conditions [2]. Because forced changes in atmospheric dynamics
are highly uncertain [3], reflecting to a very large extent internal variability in individual events,
storyline attribution focuses on forced changes in thermodynamical conditions conditional on a
certain atmospheric circulation state. Both statistical and model simulation techniques exist that aim
to reconstruct the events conditional on the atmospheric circulation state [4–6].
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Deep learning techniques are now being studied for the creation of counterfactual storylines to
overcome the limitations of traditional methods like computational costs and difficult transferability
to observations and other climate conditions. For example, convolutional neural networks are used to
create counterfactual estimates of regional mean temperatures [7] or counterfactuals are created from
deep learning driven weather forecasts [8].

Here, we evaluate whether deep learning based variational autoencoders could generate accurate
climate counterfactuals for storyline-based climate attribution. We train variational autoencoders
to reconstruct spatial temperature fields, thus implicitly inferring the regional climate change sig-
nal. Subsequently, we evaluate our variational autoencoder predictions for counterfactual climate
conditions against nudged-circulation climate simulations that represent counterfactual storylines
generated via numerical climate models. Specifically, we use the Latent Linear Adjustment Autoen-
coder framework (LLAAE, [9]) to predict European counterfactual temperatures from a proxy for
atmospheric circulation and a covariate on forced global mean temperature. The circulation state
defines the weather event of interest and is used to translate it across different climates, answering
the question: ’What temperature (field) would this specific circulation state produce in a different,
counterfactual climate?’. This method paves the way towards efficient creation of counterfactuals
and could ultimately create observational counterfactuals for any background climate state. The goal
of this study is to highlight the potential of deep learning, specifically, of the LLAAE architecture,
for creating highly versatile climate counterfactuals.

2 Datasets and methods

2.1 Community Earth System Model 2

For training the LLAAE architecture, we use the Community Earth System Model 2 Large Ensemble
(CESM2-LE) consisting of 100 members [10]. Members differ only by minimally perturbed initial
conditions, thus each simulation represents one physically plausible evolution of the climate system
from 1850-2100. The ensemble thus captures the distribution of possible climate system trajectories
[10, 11]. Importantly, the initial condition large ensemble allows for obtaining the deterministic
global warming signal (forced response) as the ensemble mean, averaging out the contributions
from internal climate variability [11]. Additionally, we use six simulations of the CESM2 climate
model (CESM2-ETH ensemble) that were simulated individually with equivalent configurations as
the CESM2-LE [12]. Further, we test the LLAAE-predicted counterfactuals against three nudged-
circulation preindustrial CESM2 control simulations [12, 13]. In these simulations, the horizontal
wind field of a preindustrial climate simulation is driven (’nudged’) towards the wind field of a
corresponding historical simulation undergoing forced climate change [14]. Nudged-circulation
climate simulations provide the counterfactuals that our method seeks to generate, and thus an ideal
benchmark.

2.2 Methods

Latent Linear Adjustment Autoencoder The LLAAE extends a traditional variational autoencoder
by linearly regressing the latent space onto a set of predictors [9]. During training, the LLAAE
encodes and decodes fields of European surface air temperature while simultaneously predicting
the latent space from a proxy for atmospheric circulation. This is a well-suited predictor, because
temperature variability in mid-latitude winter is driven to a large extent by atmospheric circulation
variability [15]. We add the covariate on forced global mean temperature (fGMT) to the set of
predictors, which accounts for the level of forced global warming. By adjusting this covariate, the
fitted model is expected to construct SAT fields from a specific circulation state in different levels of
forced climate change. We anticipate that the model’s learning objective allows sufficiently reducing
the representation of the SAT field under a changing climate into the lower-dimensional latent space
such that it can be reasonably approximated by a linear model. The LLAAE combines the flexible
power of a Variational Autoencoder, representing generative machine learning methods, with the
interpretability of a linear model and predicts a coherent spatial field.

Model setup We predict European surface air temperature (T) from the sea level pressure (SLP)
field (covering the North Atlantic and Europe), a proxy of atmospheric circulation (Figure S1). The
CESM2-LE forced response serves as the global warming covariate fGMT. The LLAAE was tuned for
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latent dimensionality and number of included SLP predictors, and trained with the Adam optimizer.
[16]. Further experimental details, tuning results and training parameter values are given in the
appendix.

Model evaluation Factual and counterfactual LLAAE predictions are evaluated against factual
simulations and counterfactual, nudged-circulation simulations, respectively. We use the coefficient
of determination R2 and the RMSE to evaluate our model predictions. Both are calculated on the
grid cell level, thereby spatially resolving model performance. The RMSE quantifies the absolute
prediction errors, complementing the variability and correlation information conveyed by the R2

value.

Table 1: Evaluation metrics of LLAAE-predicted temperature fields; shown are the mean value (µ)
and standard deviation (σ) of the corresponding spatial field (Figures S2 and S3). Metrics per grid cell
are computed between true and LLAAE-predicted time series and averaged over three test members.

µ(R2) σ(R2) µ(RMSE) σ(RMSE)

Factual 0.91 0.02 0.65 0.19
Counterfactual 0.84 0.05 0.82 0.31

3 Results: Factual and counterfactual predictions

We begin by predicting and evaluating factual temperature maps with the LLAAE. The LLAAE shows
overall high skill, as reflected by the evaluation metrics in Table 1. These indicate high similarity
between predicted and true time series. This is furthermore supported by the high explainability of
atmospheric circulation for short-term cold-season temperature variability, as is confirmed by earlier
studies [17]. Predictions of individual factual temperature fields are shown in column two of Figure
1. These results demonstrate the overall skill of the model in generating temperature fields before
intervening on the value of the forced response to obtain counterfactual temperature estimates.

The forced response covariate is set to zero to translate weather patterns into the preindustrial climate
for counterfactual predictions. Table 1 still shows high skill in predicting counterfactual temperatures,
when evaluated against the respective nudged-circulation simulation (compare Figure S4). Modeling
accurate counterfactuals is a key challenge for the LLAAE. This is because the test distribution of
nudged-circulation temperatures entails a distributional shift from the training data due to the physical
interventions of prescribed circulation and the absence of anthropogenic forcings.

Overall, the results show that the LLAAE successfully removes the underlying forced warming signal.
This demonstrates that the model has satisfactorily learned the influence of the forced response
covariate, as all other predictors remain constant compared to the factual predictions. The result
suggests that the linear model constrains the latent space well enough, such that the same atmospheric
circulation states are separated in the latent space due to the forced response covariate. Future work
could analyze the latent space structure, as shown in recent studies on European heat extremes [18]
and on the identification of impactful weather regimes [19].

Individual counterfactual temperature fields are shown in Figure 1. Looking for example at the third
row, a factual test sample in column one is compared with the corresponding nudged-circulation
simulation in column three, which is overall colder due to the missing climate change signal but retains
the same circulation-driven temperature pattern. The LLAAE counterfactual in column four closely
matches this truth, though with reduced spatial detail. Overall, the LLAAE counterfactuals compare
well to the true fields. The LLAAE-predicted counterfactuals perform better than counterfactuals
predicted by a principal component linear regression benchmark model over most parts of the
European domain (Figure S5). The linear benchmark is a standard method in earlier studies [20],
which we extended with a predictor for the forced response to have identical predictors as the LLAAE.
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Figure 1: Temperature samples chosen from the R2 distribution of LLAAE-predicted counterfactuals.
The first column shows factual simulations with factual LLAAE predictions next to it in column two.
Columns three and four show true (nudged) and predicted counterfactuals (CF) respectively.

4 Outlook and impact

Our results show that generative machine learning, specifically, a variational autoencoder, provides a
powerful approach towards creating versatile and computationally efficient counterfactual storylines.
The generated temperature fields agree well with nudged-circulation climate simulations, for which
our method provides a data-driven equivalent.

There is a physical limit to the fraction of variability that can be explained by SLP and the forced
response in a target variable. Other drivers like surface albedo, soil moisture, and evapotranspiration
influence local temperatures. While including more such predictors will likely increase the quality
of factual temperature predictions, their uncertain counterfactual values would make corresponding
LLAAE counterfactuals unreliable. By design, the LLAAE answers the introductory question with
the expected average temperature under the given atmospheric circulation. While this is valuable,
even greater insights would come from the temperature distribution around this mean, reflecting
contributions from other temperature-driving factors. These distributions would be highly valuable
future work for making comprehensive attribution statements, including those about extreme events.
We envision constructing such distributions with distributional autoencoders in the future.

We anticipate that our climate counterfactual generation method will add to the attribution toolbox:
It provides a powerful, highly versatile climate counterfactual generation technique that will be
extended to observations to derive fast, accurate and high-resolution estimates of ‘today’s (or any
other day’s) weather in a different climate’. Climate attribution actively supports managing the global
climate crisis through improving the understanding of complex climate change signals and dynamics
[21]. By estimating and communicating climate change effects, adaptation measures and the support
for climate mitigation policies may be enhanced [22].
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funded by the German Research Foundation.
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A Appendix

A.1 Model setup

SLP
T

Figure S1: European surface air temperature domain (red box) and North Atlantic Sea Level Pressure
domain (blue box).

For simplicity, we use monthly values of the cold season months December, January and February
(DJF) in 1850-2100. We use monthly temperature anomalies with respect to the reference period
1850-1900.

Sea level pressure predictors We use SLP anomalies calculated with respect to the large ensemble
mean. Instead of inputting the SLP field directly, we project the SLP field of each month onto the
(leading 1000) principal components of the SLP dataset to obtain the principal components scores
(this could be equivalently done for observations). We compute the SLP principal components using
all winter months (DJF) of the CESM2-LE.

Data splitting We use the entire CESM2 LE for training the LLAAE. Three simulations from the
CESM2-ETH ensemble are used for model validation, and the three CESM2-ETH runs (1300, 1400,
1500) that have corresponding nudged runs are used for testing. The data splitting is indicated in
Table S1.

Table S1: Data splitting into train, validation and test set.

Train Validation Test factual Test counterfactual

100 LE members CESM2-ETH mem-
bers 1000, 1100,
1200

factual CESM2-ETH
members 1300, 1400,
1500

nudged CESM2-ETH
members 1300, 1400,
1500

Tuning results We tuned the number of latent dimensions and the number of included SLP
predictors (number of included SLP principal components) to 50 and 1000 respectively.
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Training parameters The LLAAE is trained using the Adam optimizer [9, 16]. Here, the Adam
optimizer uses the following staircase exponential schedule for adjusting the learning rate during
training

η(t) = η0 × γ
t
n . (1)

η : learning rate at step t, η0 : initial learning rate
t : step number, n : number of decay steps, γ : decay rate

The step number t refers to the number of processed batches. The training parameters are: (η0: 10 -3,
n: 5000, γ: 0.96, batch size: 64).

A.2 Model performance

A.2.1 Factual LLAAE predictions

a

0.7 0.8 0.9
R2

b

0.40 0.72 1.04 1.36 1.68 2.00
RMSE [°C]

Figure S2: Spatial distribution of R2 and RMSE. Values are calculated in each grid cell for the
temperature time series of factual LLAAE prediction and the corresponding factual climate simulation
in the test set. Shown are the mean values per grid cell among the three test members in the period
1950-2100.
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A.2.2 Counterfactual LLAAE predictions

a

0.7 0.8 0.9
R2

b

0.40 0.72 1.04 1.36 1.68 2.00
RMSE [°C]

Figure S3: Spatial distribution of R2 and RMSE. Values are calculated in each grid cell for the
temperature time series of LLAAE counterfactual prediction and the corresponding nudged simulation
(i.e. truth) in the test set. Shown are the mean values per grid cell among the three test members in
the period 1950-2100.
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Figure S4: Time series of LLAAE-predicted counterfactuals vs. nudged-circulation climate simula-
tions in test-set grid cells, shown at quartiles and the best R2 among all land grid cells in Figure S3.
Each panel reports the Pearson correlation coefficient between the two time series.
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A.2.3 Comparison to benchmark model

Figure S5 resolves the difference in spatial performance measures between the LLAAE and benchmark
model predicted counterfactuals. Like before, both fields are computed as the mean of the grid-cell-
wise performance measures from the three test members.

Figure S5: Comparison of performance measures of LLAAE counterfactual predictions and PCA
benchmark model counterfactuals (LLAAE - PCA). Shown are differences in mean values of the test
set members.
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