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489,000

HEAT-RELATED DEATHS PER YEAR *
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HEATWAVES

 Threaten health, ecosystems, and economies worldwide.

e Impacts are uneven: low-income, racialized, and Global South communities are
most exposed, despite minimal contribution to emissions [4, 2].
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EXISTING SOLUTIONS

e Most operational forecasts run at 10—-30 km.
o Smooth over urban heat islands and neighborhood “hot spots.”
o Lead to systematic underestimation of heat risk in precisely those marginalized
areas most in need of targeted interventions.
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OUR CONTRIBUTION

e We introduce a high-resolution (2.5
km) Graph Neural Network framework
that produces localized temperature
forecasts 1-48 hours ahead.

e Can be post-processed to match
local heatwave definitions, supporting
equitable early-warning workflows.




DATA

e We use NOAA's URMA dataset (2.5 km, hourly).
e We predict 2-meter air temperature as a low-level signal.

e We focus on Southwestern Ontario across three nested domains, which cover mixed
land types (urban, farmland, forest, water).

o

=== seclected region === seclected region m— selected region

Region A Region B Region C
~ 44km by 33km ~ T1km by 163km ~ 333km by 243km



DATA

e Data from resource-limited regions is often sparse, inconsistent, and difficult to
align with information-rich datasets.

e We also explore language-model embeddings as an intermediate representation.
Each Region A observation is transformed into a short paragraph, for example:

temperature is 291.6 K, dew point is 283.7 K, u wind component is 4.0 m/s, v wind
component is -2.1 m/s, surface pressure is 99209 Pq, ..., elevation is 172.0 meters

e These descriptions are encoded using ClimateBERT [5], which become node
features in the pipeline.

[5] Webersinke et al. (2022)
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(GCN) with a Gated
Recurrent Unit (GRU) was

trained for each region.
neighborhood effects

Network
e Graph convolution layers model

e A hybrid Graph Convolutional
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to predict
6,12, 18, 24, 36,

and 48h ahead from the current

Graph setup. Each grid point in the region is represented
as a graph node with meteorological features,
connected by edges to capture spatial interactions.
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 The objective was
temperature at 1

time.
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RESULTS

Sample #3237 | Date: 2024-12-05 14:00 | Offset: +48h

Node-wise MAE over Test Set

Ground Truth (+48h) Prediction (+48h)
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Region Mean MAE (*C) MAE®©48h (°C) RMSE®48h (°C)
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Temperature (°C)
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A 2.55 3.78 4.84
B 2.48 3.73 4.84
C 1.93 2.93 3.90

e Performance improved as the spatial window expanded (Region A — Region C).

e Training on Region C strains memory, so we also sampled every 6h. The 6h model

reached mean MAE 2.39, MAE@48h 3.15, and RMSE@48h 4.16.
> i.e., modest degradations (+0.46, +0.22, +0.26) for substantially lower compute.



RESULTS

e Performance with embeddings shows a modest decrease in mean MAE relative to
the tabular baseline.

e Control model performs noticeably worse.

e This suggests that embedding features carry meaningful signals.

Model Mean MAE (°C) MAE®©@48h (°C) RMSE®©48h (°C)
Baseline (tabular) 2.55 3.78 4.84
Embeddings (ClimateBERT) 3.34 4.34 5.54

Control (random weights) 9.11 8.89 10.49




IMPACT

e Localized forecasting is an equity issue:
o Coarse models miss nheighbourhood-level risks that disproportionately affect
marginalized communities.

e Our approach offers a transferrable solution:
o Models trained in data-rich regions can be adapted to under-monitored
contexts to strengthen early warnings and resource allocation.



CONCLUSIONS

e We presenta 2.5 kmm GCN-GRU framework for 2-meter temperature forecasting
across 3 regions, and found that:
o performance improves as spatial context increases,
o a 6-hour sampling variant preserves most skill, and
o an embedding approach standardizes heterogeneous inputs.

NEXT STEPS

Building matched-resolution baseline models.

Broadening geographic coverage to additional regions.

Integrating with operational dashboards for practical deployment.

Extending the framework to other climate extremes (wildfire, floods, drought).
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Thank you!

Questions? Comments? Suggestions?
— jelshawa@uwo.ca
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