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489,000
HEAT-RELATED DEATHS PER YEAR [6]

[6] Q. Z. et al. (2021).
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Threaten health, ecosystems, and economies worldwide. 

Impacts are uneven: low-income, racialized, and Global South communities are
most exposed, despite minimal contribution to emissions [4, 2].

HEATWAVES

[4] Parsons et al. (2024), [2] Deivanayagam et al. (2023) 
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EXISTING SOLUTIONS
Most operational forecasts run at 10–30 km.

Smooth over urban heat islands and neighborhood “hot spots.” 
Lead to systematic underestimation of heat risk in precisely those marginalized
areas most in need of targeted interventions.

[7] Lam et al. (2023), [8] Pathak et al. (2022)

[7]

[8]
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OUR CONTRIBUTION

We introduce a high-resolution (2.5
km) Graph Neural Network framework
that produces localized temperature
forecasts 1–48 hours ahead.

Can be post-processed to match
local heatwave definitions, supporting
equitable early-warning workflows.
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DATA
We use NOAA’s URMA dataset (2.5 km, hourly). 

We predict 2-meter air temperature as a low-level signal.

We focus on Southwestern Ontario across three nested domains, which cover mixed
land types (urban, farmland, forest, water).

Region A Region B Region C
~ 44km by 33km ~ 111km by 163km ~ 333km by 243km
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DATA
Data from resource-limited regions is often sparse, inconsistent, and difficult to
align with information-rich datasets. 

We also explore language-model embeddings as an intermediate representation.
Each Region A observation is transformed into a short paragraph, for example: 

These descriptions are encoded using ClimateBERT [5], which become node
features in the pipeline.

temperature is 291.6 K, dew point is 283.7 K, u wind component is 4.0 m/s, v wind
component is -2.1 m/s, surface pressure is 99209 Pa, ... , elevation is 172.0 meters

[5] Webersinke et al. (2022)
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A hybrid Graph Convolutional
Network (GCN) with a Gated
Recurrent Unit (GRU) was
trained for each region. 

Graph convolution layers model
neighborhood effects [3].

GRUs capture temporal
dependencies [1].

 
The objective was to predict
temperature at 1, 6, 12, 18, 24, 36,
and 48h ahead from the current
time.

MODEL

Sample selected region.  Corresponding graph.

Graph setup. Each grid point in the region is represented
as a graph node with meteorological features,

connected by edges to capture spatial interactions.

[3] Kipf and Welling (2017), [1] Cho et al. (2014)
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Performance improved as the spatial window expanded (Region A → Region C).

Training on Region C strains memory, so we also sampled every 6h. The 6h model
reached mean MAE 2.39, MAE@48h 3.15, and RMSE@48h 4.16.

i.e., modest degradations (+0.46, +0.22, +0.26) for substantially lower compute.

RESULTS - Per-region performance



RESULTS
Performance with embeddings shows a modest decrease in mean MAE relative to
the tabular baseline.

Control model performs noticeably worse.

This suggests that embedding features carry meaningful signals.

- Embeddings
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IMPACT
Localized forecasting is an equity issue: 

Coarse models miss neighbourhood-level risks that disproportionately affect
marginalized communities. 

Our approach offers a transferrable solution: 
Models trained in data-rich regions can be adapted to under-monitored
contexts to strengthen early warnings and resource allocation. 
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CONCLUSIONS
We present a  2.5 km GCN–GRU framework for 2-meter temperature forecasting
across 3 regions, and found that:

performance improves as spatial context increases,
a 6-hour sampling variant preserves most skill, and
an embedding approach standardizes heterogeneous inputs. 

Building matched-resolution baseline models.
Broadening geographic coverage to additional regions.
Integrating with operational dashboards for practical deployment.
Extending the framework to other climate extremes (wildfire, floods, drought).
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Thank you!
Questions? Comments? Suggestions?

→ jelshawa@uwo.ca
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