A Graph Neural Network Approach for Localized and High-Resolution Temperature Forecasting

Joud El-Shawa 1,2 Elham Bagheri 1,2 Sedef Akinli Kocak 1 Yalda Mohsenzadeh 1,2*

¹Vector Institute for Artificial Intelligence ²Western University

Introduction

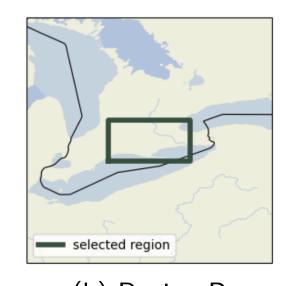
Heatwaves are among the deadliest climate hazards (\sim 489k deaths/year, 2000–2019 [3]) and disproportionately harm low-income, racialized, and Global South communities [5, 2].

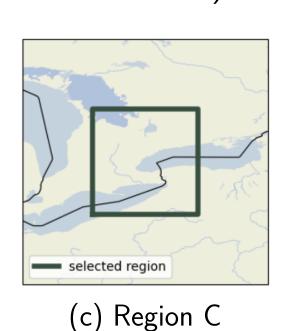
Most operational forecasts run at 10–30 km, smoothing over urban heat islands and neighborhood "hot spots," which leads to systematic underestimation exactly where targeted action is needed.

We introduce a high-resolution (2.5 km) Graph Neural Network framework that produces localized temperature forecasts 1–48 hours ahead, which can be post-processed to match local heatwave definitions, supporting equitable early-warning workflows.

Data

We use NOAA's URMA dataset (2.5 km, hourly). We predict 2-meter air temperature as a low-level signal, and focus on Southwestern Ontario across three nested domains, seen in Figure 2, which cover mixed land types (urban, farmland, forest, water).





(b) Region B

Figure 1: Bounding boxes around Regions A–C.

Embeddings Framework

Data from resource-limited regions is often sparse, inconsistent, and difficult to align with information-rich datasets.

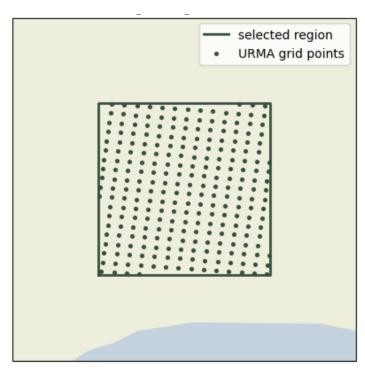
In a separate setup, we also explore language-model embeddings as an intermediate representation. Each Region A observation is transformed into a short paragraph, for example:

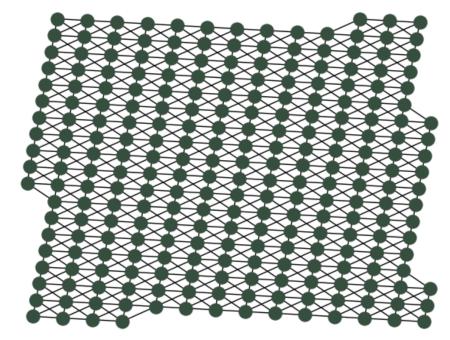
temperature is 291.6 K, dew point is 283.7 K, u wind component is 4.0 m/s, v wind component is -2.1 m/s, surface pressure is 99209 Pa, ... , elevation is 172.0 meters.

These descriptions are encoded using ClimateBERT [6], which become node features in the pipeline.

GNN-Based Framework

A hybrid Graph Convolutional Network (GCN) with a Gated Recurrent Unit (GRU) was trained for each region.





(a) Sample selected region.

(b) Corresponding graph.

Figure 2: Graph setup. Each grid point in the region is represented as a graph node with meteorological features, connected by edges to capture spatial interactions.

Graph convolution layers model neighborhood effects [4], while GRUs capture temporal dependencies [1]. The objective was to predict temperature at 1, 6, 12, 18, 24, 36, and 48h ahead from the current time.

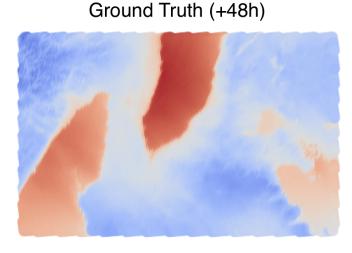
Results

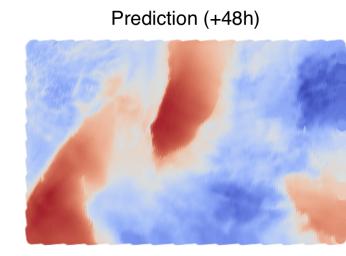
Table 1: Per-region performance. Mean across horizons; 48h at the farthest forecast horizon.

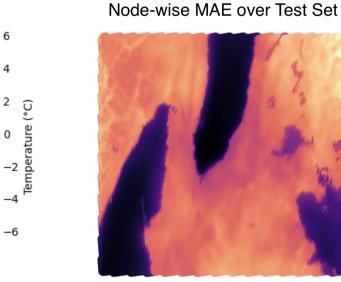
Region	Mean MAE (°C)	MAE@48h (°C)	RMSE@48h (°C)
A	2.55	3.78	4.84
В	2.48	3.73	4.84
C	1.93	2.93	3.90

Training on Region C strains memory, so we also sampled every 6h. The 6h model reached mean MAE 2.39, MAE@48h 3.15, and RMSE@48h 4.16—i.e., modest degradations (+0.46, +0.22, +0.26) for substantially lower compute.

Sample #3237 | Date: 2024-12-05 14:00 | Offset: +48h







(a) Randomly sampled test timestamp showing ground truth and model predictions 48 hours ahead in Region C.

(b) Average node-wise MAE across the test set in Region C.

Figure 3: Example results from Region C.

Table 2: Region A performance comparisons. Mean across horizons; 48h at the farthest horizon.

Model	Mean MAE (°C)	MAE@48h (°C)	RMSE@48h (°C)
Baseline (tabular)	2.55	3.78	4.84
Embeddings (ClimateBERT)	3.34	4.34	5.54
Control (random weights)	9.11	8.89	10.49

Key Insights & Impact

- Performance improved as the spatial window expanded (Region A \rightarrow Region C).
- On Region A, performance with embeddings shows a modest decrease in mean MAE relative to the tabular baseline, while a control model performs noticeably worse, suggesting that embedding features carry meaningful signals.

Localized forecasting is an equity issue: coarse models miss neighbourhood-level risks that disproportionately affect marginalized communities. Our approach offers a transferrable solution: models trained in data-rich regions can be adapted to under-monitored contexts to strengthen early warnings and resource allocation.

Conclusions & Next Steps

We present a 2.5 km GCN-GRU framework for 2-meter temperature forecasting across 3 regions, with performance improving as spatial context increases; a 6-hour sampling variant preserves most skill, and an embedding approach standardizes heterogeneous inputs.

Next steps include:

- Building matched-resolution baseline models.
- Broadening geographic coverage to additional regions.
- Extending the framework to other climate extremes (wildfire, floods, drought).

References

- [1] K. Cho, B. van Merrienboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk, and Y. Bengio. Learning phrase representations using rnn encoder-decoder
- for statistical machine translation, 2014. URL https://arxiv.org/abs/1406.1078. [2] T. A. Deivanayagam, S. English, J. Hickel, J. Bonifacio, R. R. Guinto, K. X. Hill, M. Hug, and R. Issa. Envisioning environmental equity: climate change, health, and racial justice. *The Lancet*, 2023. doi: https://doi.org/10.1016/S0140-6736(23)00919-4.
- [3] Q. Z. et al. Global, regional, and national burden of mortality associated with non-optimal ambient temperatures from 2000 to 2019. The Lancet Planetary Health, 5(7):e415-e425, 2021.
- [4] T. Kipf and M. Welling. Semi-supervised classification with graph convolutional networks. In International Conference on Learning Representations (ICLR),
- [5] E. S. Parsons, A. Jowell, E. Veidis, M. Barry, and S. T. Israni. Climate change and inequality. *Pediatric Research*, 2024.
- [6] N. Webersinke, M. Kraus, J. Bingler, and M. Leippold. ClimateBERT: A Pretrained Language Model for Climate-Related Text. In *Proceedings of AAAI 2022* Fall Symposium: The Role of AI in Responding to Climate Challenges, 2022. doi: https://doi.org/10.48550/arXiv.2212.13631.

