A Graph Neural Network Approach for Localized
and High-Resolution Temperature Forecasting
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Heatwaves are among the deadliest climate hazards (~489k Table 1: Per-region performance. Mean across horizons; 48h at the farthest forecast horizon.
deaths/year, 2000-2019 [3]) and disproportionately harm Region Mean MAE ("C) MAE®48h ("C) RMSE®48h (-C)
low-income, racialized, and Global South communities [5, 2]. A 5 55 378 484

| _ B 2.48 3.73 4.84
Most operational forecasts run at 10-30 km, smoothing over urban C 193 2 93 3.90

heat islands and neighborhood “hot spots,” which leads to

systematic underestimation exactly where targeted action is needed.  Training on Region C strains memory, so we also sampled every 6h. The 6h model
reached mean MAE 2.39 MAE®48h 3.15, and RMSE®©48h 4.16—i.e., modest

We introduce a high-resolution (2.5 km) Graph Neural Network degradations (+0.46, +0.22, +0.26) for substantially lower compute.

framework that produces localized temperature forecasts 1-48 hours

ahead, which can be post-processed to match local heatwave Sample #3237 | Date: 2024-12-05 14:00 | Offset: +48h Node-wise MAE over Test Set
definitions, supporting equitable early-warning workflows. Ground Truth (+48h) Prediction (+48h) |
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We use NOAA's URMA dataset (2.5 km, hourly). We predict

2-meter air temperature as a low-level signal, and focus on
Southwestern Ontario across three nested domains, seen in Figure 2,
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which cover mixed land types (urban, farmland, forest, water). (a) Randomly sampled test timestamp showing ground truth and model  (b) Average node-wise MAE
predictions 48 hours ahead in Region C. across the test set in
Region C.

Figure 3: Example results from Region C.
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Table 2: Region A performance comparisons. Mean across horizons; 48h at the farthest horizon.
= selected region == selected region == selected region M0d6| Mea n MAE (OC) MAE@48h (OC) RMSE@48h (OC)
| | | Baseline (tabular) 2.55 3.78 4.84
() Region A (b) Region B (<) Region C Embeddings (ClimateBERT) 3.34 4.34 5.54
Figure 1: Bounding boxes around Regions A-C. Control (random weights) 0.11 8.89 10.49

Embeddings Framework Key Insights & Impact

Data from resource-limited regions is often sparse, inconsistent, and e Performance improved as the spatial window expanded (Region A — Region C).
difficult to align with information-rich datasets. e On Region A, performance with embeddings shows a modest decrease in mean
In a separate setup, we also explore language-model embeddings as MAE relative to the tabular baseline, while a control model performs noticeably
an intermediate representation. Each Region A observation is worse, suggesting that embedding features carry meaningful signals.

transformed into a short paragraph, for example:

Localized forecasting is an equity issue: coarse models miss neighbourhood-level risks
temperature is 291.6 K, dew point is 283.7 K, u wind component that disproportionately affect marginalized communities. Our approach offers a

is 4.0 m/s, v wind component is -2.1 m/s, surface pressure is - : : : :

A Pa. .. - clevEen e 1790 oo, transferrable solution: models trained in data-rich regions can be adapted to

under-monitored contexts to strengthen early warnings and resource allocation.

These descriptions are encoded using ClimateBERT [6], which

become node features in the pipeline. _
PP Conclusions & Next Steps
GNN-Based Framework We present a 2.5 km GCN-GRU framework for 2-meter temperature forecasting

. . _ across 3 regions, with performance improving as spatial context increases: a 6-ho
A hybrid Graph Convolutional Network (GCN) with a Gated o552 TEGIONS, WITH PEMOIMAnCE IMProving as spariar Context e . o
. . . sampling variant preserves most skill, and an embedding approach standardizes
Recurrent Unit (GRU) was trained for each region.

heterogeneous inputs.

- selected region
« URMA grid points

Next steps include:
e Building matched-resolution baseline models.
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e Broadening geographic coverage to additional regions.

.........
-
Priiiiiiiiicy
ooooooooooo
...:oooo.....:‘
..........
Oo::."'°'00:
..t.::: ......
. L ™Y
o::::."°0.::
...........
oooooooooooo
..........
OOOOOO

e Extending the framework to other climate extremes (wildfire, floods, drought).
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