
A Graph Neural Network Approach for Localized
and High-Resolution Temperature Forecasting

Joud El-Shawa1,2 Elham Bagheri1,2 Sedef Akinli Kocak1 Yalda Mohsenzadeh1,2∗

1Vector Institute for Artificial Intelligence 2Western University

Introduction

Heatwaves are among the deadliest climate hazards (∼489k
deaths/year, 2000–2019 [3]) and disproportionately harm
low-income, racialized, and Global South communities [5, 2].

Most operational forecasts run at 10–30 km, smoothing over urban
heat islands and neighborhood “hot spots,” which leads to
systematic underestimation exactly where targeted action is needed.

We introduce a high-resolution (2.5 km) Graph Neural Network
framework that produces localized temperature forecasts 1–48 hours
ahead, which can be post-processed to match local heatwave
definitions, supporting equitable early-warning workflows.

Data

We use NOAA’s URMA dataset (2.5 km, hourly). We predict
2-meter air temperature as a low-level signal, and focus on
Southwestern Ontario across three nested domains, seen in Figure 2,
which cover mixed land types (urban, farmland, forest, water).
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Figure 1: Bounding boxes around Regions A–C.

Embeddings Framework

Data from resource-limited regions is often sparse, inconsistent, and
difficult to align with information-rich datasets.

In a separate setup, we also explore language-model embeddings as
an intermediate representation. Each Region A observation is
transformed into a short paragraph, for example:

temperature is 291.6 K, dew point is 283.7 K, u wind component
is 4.0 m/s, v wind component is -2.1 m/s, surface pressure is
99209 Pa, ... , elevation is 172.0 meters.

These descriptions are encoded using ClimateBERT [6], which
become node features in the pipeline.

GNN-Based Framework

A hybrid Graph Convolutional Network (GCN) with a Gated
Recurrent Unit (GRU) was trained for each region.

(a) Sample selected region. (b) Corresponding graph.

Figure 2: Graph setup. Each grid point in the region is represented as a graph node
with meteorological features, connected by edges to capture spatial interactions.

Graph convolution layers model neighborhood effects [4], while
GRUs capture temporal dependencies [1]. The objective was to
predict temperature at 1, 6, 12, 18, 24, 36, and 48h ahead from the
current time.

Results

Table 1: Per-region performance. Mean across horizons; 48h at the farthest forecast horizon.

Region Mean MAE (°C) MAE@48h (°C) RMSE@48h (°C)
A 2.55 3.78 4.84
B 2.48 3.73 4.84
C 1.93 2.93 3.90

Training on Region C strains memory, so we also sampled every 6h. The 6h model
reached mean MAE 2.39, MAE@48h 3.15, and RMSE@48h 4.16—i.e., modest
degradations (+0.46, +0.22, +0.26) for substantially lower compute.

(a) Randomly sampled test timestamp showing ground truth and model
predictions 48 hours ahead in Region C.

(b) Average node-wise MAE
across the test set in

Region C.

Figure 3: Example results from Region C.

Table 2: Region A performance comparisons. Mean across horizons; 48h at the farthest horizon.

Model Mean MAE (°C) MAE@48h (°C) RMSE@48h (°C)
Baseline (tabular) 2.55 3.78 4.84
Embeddings (ClimateBERT) 3.34 4.34 5.54
Control (random weights) 9.11 8.89 10.49

Key Insights & Impact

• Performance improved as the spatial window expanded (Region A → Region C).

• On Region A, performance with embeddings shows a modest decrease in mean
MAE relative to the tabular baseline, while a control model performs noticeably
worse, suggesting that embedding features carry meaningful signals.

Localized forecasting is an equity issue: coarse models miss neighbourhood-level risks
that disproportionately affect marginalized communities. Our approach offers a
transferrable solution: models trained in data-rich regions can be adapted to
under-monitored contexts to strengthen early warnings and resource allocation.

Conclusions & Next Steps

We present a 2.5 km GCN–GRU framework for 2-meter temperature forecasting
across 3 regions, with performance improving as spatial context increases; a 6-hour
sampling variant preserves most skill, and an embedding approach standardizes
heterogeneous inputs.

Next steps include:

• Building matched-resolution baseline models.

• Broadening geographic coverage to additional regions.

• Extending the framework to other climate extremes (wildfire, floods, drought).
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