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Abstract

Heatwaves are intensifying worldwide and are among the deadliest weather dis-
asters. The burden falls disproportionately on marginalized populations and the
Global South, where under-resourced health systems, exposure to urban heat is-
lands, and the lack of adaptive infrastructure amplify risks. Yet current numerical
weather prediction models often fail to capture micro-scale extremes, leaving the
most vulnerable excluded from timely early warnings. We present a Graph Neural
Network framework for localized, high-resolution temperature forecasting. By
leveraging spatial learning and efficient computation, our approach generates fore-
casts at multiple horizons, up to 48 hours. For Southwestern Ontario, Canada, the
model captures temperature patterns with a mean MAE of 1.93°C across 1-48h
forecasts and MAE@48h of 2.93°C, evaluated using 24h input windows on the
largest region. While demonstrated here in a data-rich context, this work lays the
foundation for transfer learning approaches that could enable localized, equitable
forecasts in data-limited regions of the Global South.

1 Introduction

A global study estimated that from 2000-2019 approximately 489,000 heat-related deaths occurred
each year [1]], a figure also highlighted by the World Health Organization [2], and one that has
likely risen as the climate crisis accelerates. Heatwaves threaten health, ecosystems, and economies
worldwide. Their impacts are uneven: low-income, racialized, and Global South communities
are most exposed, despite minimal contribution to emissions [3, 4]]. Factors such as poor housing
insulation, limited cooling infrastructure, and underfunded public health amplify vulnerability [} 6]].
At the national scale, low- and middle-income countries face severe risks due to lower adaptive
capacity and constrained resources [7]].

Unfortunately, current operational weather forecasts often lack the granularity and lead time needed
to adequately warn and protect local communities. Existing forecast systems typically operate at
10-30 km scales, smoothing over urban heat islands or neighborhood ‘“hot spots.” This leads to
systematic underestimation of heat risk in precisely those marginalized areas most in need of targeted
interventions [8]]. Addressing this inequity requires forecasting systems that are high-resolution,
adaptive, and accessible across diverse contexts, from urban heat islands in megacities to rural,
resource-limited regions.

Traditional numerical weather prediction (NWP) models are computationally costly, limited in
resolution, and rely on parameterizations that often miss land-atmosphere feedbacks critical for
heat extremes [9, [10]. Recent machine learning advances demonstrate alternatives: GraphCast
achieves skillful global forecasts at 28 km resolution [[11], FourCastNet uses Fourier operators for
global predictions at a similar resolution [12]], and neural models improve extreme heat anomaly
forecasts [[13]. Most approaches, however, emphasize global scales. Localized prediction remains
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Figure 1: Bounding boxes around Regions A-C.

underdeveloped, despite its importance for frontline adaptation. Li et al. [14] showed that Graph
Neural Networks (GNN5s) can classify regional heatwave events with high accuracy, underscoring
their potential for fine-scale, actionable forecasting. Our work extends this logic: using GNNs to
produce continuous, high-resolution temperature forecasts that can be post-processed to identify
heatwaves. This provides a step toward developing practical, fine-scale forecasting frameworks that
can eventually be adapted to data-limited or vulnerable contexts in the Global South.

2 Methods

Data. Our study leverages the National Oceanic and Atmospheric Administration (NOAA) Unre-
stricted Mesoscale Analysis (URMA) dataset as the primary source of training and evaluation data
[15]. URMA provides high-resolution (2.5 km, hourly), gridded analyses of surface meteorological
variables, such as temperature, winds, pressure, and elevation, which are well-suited for our task of
fine-scale forecasting. While the end goal is operational heatwave forecasting, we forecast 2-meter
air temperature as the primary target because heatwave definitions vary across jurisdictions (for
example, consecutive hot days, exceedance of absolute thresholds, or percentile-based criteria).
Predicting temperature provides a low-level signal that can be post-processed to align with region- or
agency-specific heatwave definitions, without retraining the model.

Regions. Following discussions with stakeholders from climate NGOs in the Global South, we
decided to focus on Southwestern Ontario in Canada as our case study region since it incorporates
various land types, such as urban, farmland, forest, and water bodies. Specifically, we have 3
bounding boxes in this region, as depicted in Figure [T} Region A is from 42.78°N, 81.45°W to
43.18°N, 81.05°W (= 44 km by 33 km); Region B is from 42.50°N, 81.50°W to 43.50°N, 79.50°W
(=111 km by 163 km); Region C is from 42.00°N, 81.00°W to 45.00°N, 78.00°W (=333 km by
243 km). This setup allows us to run computationally intensive experiments on the smallest window
(A), then demonstrate scalability and proof of concept on larger domains with consistent data and
preprocessing. All three regions are covered by the URMA analysis grids for the variables of interest.

Preprocessing. We obtained hourly data for all variables spanning multiple years, with exact
ranges specified in the Appendix, for each region. Missing or invalid entries were filled using spatial
interpolation (i.e., mean of nearby grid points). Each input feature was standardized using the mean
and standard deviation of the training set. The target variable (temperature) was also normalized
during model training, though final errors are reported in physical units (°C) for clarity.

Proposed model. We developed and trained a hybrid Graph Convolutional Network (GCN) with a
Gated Recurrent Unit (GRU) for each region. Each grid point in the region is represented as a graph
node with meteorological features (temperature, winds, pressure, etc.), connected by edges to capture
spatial interactions. Graph convolution layers model neighborhood effects [16], while GRUs capture
temporal dependencies [17]. Train/validation/test splits varied by pipeline and region (specified in
the Appendix). The objective was to predict temperature 1-48 hours ahead from the current time (at 1,
6, 12, 18, 24, 36, and 48h). The models were optimized using mean squared error (MSE).



Table 1: Per-region performance. Mean across horizons; 48h at the farthest forecast horizon.
(MAE = Mean Absolute Error, RMSE = Root Mean Squared Error)

Region Mean MAE (°C) MAE@48h (°C) RMSE@48h (°C)

A 2.55 3.78 4.84
B 2.48 3.73 4.84
C 1.93 2.93 3.90

Table 2: Region A performance comparisons. Mean across horizons; 48h at the farthest horizon.

Model Mean MAE (°C) MAE@48h (°C) RMSE@48h (°C)
Baseline (tabular) 2.55 3.78 4.84
Embeddings (ClimateBERT+PCA) 3.34 4.34 5.54
Control (random weights) 9.11 8.89 10.49

Embeddings. Data from resource-limited regions is often sparse, inconsistent, and difficult to align
with information-rich datasets. In a separate setup, to harmonize heterogeneous inputs, we also
explore language-model embeddings as an intermediate representation. We convert each Region A
observation (per timestamp and location) into a short paragraph, for example: “femperature is 291.6 K,
dew point is 283.7 K, u wind component is 4.0 m/s, v wind component is -2.1 m/s, surface pressure is 99209 Pa,
..., elevation is 172.0 meters.” These descriptions are then encoded using a ClimateBERT model [18]],
yielding a 768-dimensional vector. To control dimensionality and reduce noise, we apply Principal
Component Analysis (PCA) [19], fitting on train and transforming train, validation, and test. The
reduced embeddings are then used as node features within the GCN-GRU forecasting pipeline.

3 Results

As summarized in Table [T} the GNNs achieved strong performance across all three regions. Per-
formance improved as the spatial window expanded (Region C > Region B > Region A), which
is consistent with larger graphs capturing richer neighborhood interactions and mesoscale context.
These results indicate that graph-based models can provide accurate, high-resolution forecasts suitable
for downstream early-warning pipelines.

On Region A, as seen in Table 2] performance with embeddings shows a modest decrease in mean
MAE relative to the tabular baseline, while a control model initialized with random weights performs
noticeably worse, indicating that the embedding features carry meaningful signals. This approach
provides a standardized input format that can accommodate missing or unstandardized variables,
which is valuable when extending to data-limited regions. We expect comparable performance with
minimal fine-tuning as additional local data becomes available.

4 Discussion

Table[T]shows a clear trend: MAE and RMSE decrease as region size increases, suggesting that larger
graphs capture richer spatial context. Training on Region C strains memory, so we also sampled every
6 h. The 6 h model reached mean MAE 2.39, MAE@48h 3.15, and RMSE@48h 4.16, versus the
hourly model’s 1.93, 2.93, and 3.90, respectively—i.e., modest degradations (+0.46, +0.22, +0.26) for
substantially lower compute. This indicates that coarser temporal sampling can cut compute demands
significantly while retaining most of the forecasting skill. Additionally, the use of embeddings
provides a way to standardize non-standard data for modelling.

Although the results are promising, our evaluation is limited to held-out test performance on URMA
data. Most benchmarked state-of-the-art systems run at much coarser scales (about 10-50 km, 3-6h),
whereas our model operates at 2.5 km and hourly. This resolution mismatch makes fair comparisons
difficult and highlights the need for future matched-resolution baselines. Future work should also test
transferability to regions with sparser data and different climate regimes.
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Figure 2: Example results from Region C.

Localized climate forecasting is not just a technical problem, but an equity issue. Marginalized groups,
already at heightened risk due to structural inequalities [S]], are further disadvantaged when coarse
models fail to detect their specific vulnerabilities [8,[20]. Our approach offers a transferrable solution:
models trained in data-rich regions can be adapted for under-monitored contexts, strengthening
forecasting capacity and promoting climate resilience where it is most needed. For Global South
governments with limited resources, such forecasts could support early-warning systems that prioritize
vulnerable neighborhoods, enabling more efficient allocation of scarce resources (e.g., cooling centers,
medical services, energy). By producing forecasts at community scale, GNN-based models can
support municipal planning and public health interventions in ways coarse global models cannot.

This work contributes to the dialogue on climate Al [21]] by showing that small, region-specific GNNs
can provide outsized impact compared to large-scale models requiring vast compute. Lightweight,
locally deployable systems may offer the most practical path toward equitable climate resilience.

5 Conclusion

We introduced a GCN-GRU framework for community-scale 2-meter temperature forecasting at
2.5 km using NOAA URMA across three regions in Southwestern Ontario. The models achieved
strong performance, with MAE and RMSE improving as spatial context increased. A lighter 6-hour
sampling preserved most of the hourly model’s skill, and a language-model embedding pathway
provided a practical route to standardize inputs while maintaining useful performance.

Although the long-term goal is heatwave early warning, forecasting temperature offers a flexible,
low-level signal that can be post-processed to match specific heatwave definitions. Future directions
include expanding predicted targets beyond temperature to include humidity, wind, and related
variables, enabling a composite index and more reliable event detection. To address limitations
such as resolution mismatch with coarser baselines and evaluation only on URMA data, we plan
matched-resolution baselines for fairer comparisons and broader geographic coverage. Beyond this,
integrating with operational dashboards will help the system support timely and equitable early
warnings at low computational and environmental cost. The same framework could also extend to
other extremes, such as wildfires, floods, or droughts.
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Appendix

Table 3: Description of selected NOAA URMA variables.

Abbreviation Definition

t2m 2-meter air temperature (K)

d2m 2-meter dewpoint temperature (K)
ulo 10-meter u-component of wind (m/s)
v10 10-meter v-component of wind (m/s)
sp Surface pressure (Pa)

orog Orography (m)

Table 4: Baseline experimental setup: data frequency and splits.

Region Frequency Start Date End Date  Split  Train;Val;Test Periods/Timestamps

A 1hr 01/2022  06/2025 Manual 2022 ;2023 ; 2024-end
B 1hr 01/2022  06/2025 Manual 2022 ; 2023 ; 2024-end
C lhr 01/2022  12/2024  Ratio 18,396 ; 3,942 ; 3,943
C (6hr) 6hr 06/2017  06/2025  Ratio 8,170 ;1,751 ; 1,751

Additional information: Features included: t2m, d2m, ul0, v10, sp, orog. Splits were chosen based on the
best-performing models identified via grid search. For regions with data extending to June 2025 (A and B), we
included these months in the test set rather than shifting timestamp boundaries, to avoid bias from introducing
additional seasonal data. Ratio-based splits followed a 70%/15%/15% scheme. For Region C, due to resource

limitations, we excluded the additional six months available in Regions A and B that were extra for testing.

Table 5: Baseline experimental setup: hyperparameters and forecast horizons.

Region Hyperparameters Forecast Horizons (hrs)
A LR=0.0001, Win=48, BS=16, HD=32, Dist=8 1, 6, 12, 18, 24, 36, 48
B LR=0.001, Win=24, BS=16, HD=32, Dist=8 1, 6, 12, 18, 24, 36, 48
C LR=0.001, Win=24, BS=16, HD=32, Dist=4 1, 6, 12, 18, 24, 36, 48

C (6hr) LR=0.001, Win=24, BS=16, HD=32, Dist=4 6, 12, 18, 24, 36, 48

Abbreviations: LR = learning rate; Win = input window (hrs), BS = batch size; HD = hidden dimensions;
Dist = distance (threshold for graph connectivity (km)). Final hyperparameters were selected based on the
best-performing models identified via grid search.

Table 6: Training setup: GPU hardware, number of GPUs, and runtime per region.

Region GPU Model #GPUs  Runtime
A NVIDIA L40S (48GB) 2 35 min
B NVIDIA L40S (48GB) 2 42 min
C NVIDIA H100 SXM (80GB) 2 5h 40 min
C (6hr) NVIDIA L40S (48GB) 2 5h 45 min

Cluster specs: L40S nodes - Dell 750xa, 2 xIntel Xeon Gold 6338, 512 GB RAM, 4xNVIDIA L40S 48GB.
H100 nodes - Dell XE9680, 2 xIntel Xeon Gold 6442Y, 2048 GB RAM, 8 xNVIDIA H100 SXM 80GB.
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