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Wildfires are among Europe’s most

destructive natural hazards, affecting
ecosystems, economies, and
communities (EEA, 2024). o
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Traditional fire indices rely mainly on
weather, missing key human and
landscape drivers
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o Develop a data-driven wildfire risk model

e Combine climate, land use, human activity, and
topography to estimate daily wildfire probability
across Southern Europe.

9 Interpret the model with explainable Al

* Assess how different predictors contribute to
wildfire risk.

region and evaluate its predictive performance
and explainability.

Model scalability
m » Test model scalability by applying it to an unseen



Methodology
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Methodology
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Model selection

(a) ROC curves
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» RF model selected for its scalability
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Model performance in Europe — test years

RF model evaluation over 2021 - 2023 (b) Recorded fires fire season 2021 - 2023

* Model run daily with the
classification probability used to

=
assess wildfire risk. 23
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Model explainability: top 12 predictors

SHAP values from the testing data (2021 - 2023)

 SHapley Additive exPlanations (SHAP) method can be used to assess the
contribution of each feature to an individual prediction (Lundberg and Lee, 2017).
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Model scalability: A case study in Portugal

October 2017 fires: spatial assessment

* The RF modelis run daily in Portugal (unseen region) and we first focus here on the
day where the most fires were recorded: 15" of October 2017

(a) Recorded fires 2017-10-15 (b) ML fire risk 2017-10-15 (c) FWI 2017-10-15
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Model scalability: A case study in Portugal

October 2017 fires: temporal assessment & explainability
* We now focus on the location where the most fires were recorded and assess the
temporal variability of the model output as well as the SHAP values for the top predictors
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» ML fire risk high when fires » Drop in fire risk associated with drop in the SHAP
were recorded and drops in values of the weather variables.
the second half of the month. » Shrub and slope fraction contribute to high fire risk
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Conclusion & next steps
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Next steps

Any questions ?

» Extend analysis to other regions
ophme@dtu.dk

» Future projections of wildfire risk

11


mailto:ophme@dtu.dk

References

C. Arderne, C. Zorn, C. Nicolas, and E. E. Koks. Predictive mapping of the global power system using open data. Scientific Data, 7(1):19, 2020. ISSN 2052-4463. doi:
10.1038/s41597-019-0347-4. URL https://doi.org/10.1038/s41597-019-0347-4.

C. Bountzouklis, D. M. Fox, and E. Di Bernardino. Predicting wildfire ignition causes in southern France using explainable artificial intelligence (xai) methods. Environmental
Research Letters, 18,4 2023. ISSN 17489326. doi: 10.1088/1748-9326/acc8ee.

A. Dorph, E. Marshall, K. A. Parkins, and T. D. Penman. Modelling ignition probability for human-and lightning-caused wildfires in Victoria, Australia. Natural Hazards and Earth
System Sciences,22:3487-3499, 10 2022. ISSN 16849981. doi: 10.5194/nhess-22-3487-2022.

European Environment Agency. CORINE Land Cover 2018 (raster 100 m), Europe, 6-yearly. Copernicus Programme, European Environment Agency, 2020. doi:
10.2909/960998c1-1870-4e82-8051-6485205ebbac.

Forest Fire Emergency Copernicus. European Forest Fire Information System (EFFIS). https://forest-fire.emergency.copernicus.eu/, 2025. Accessed: 2025-08-06

GISCO. EU-DEM: Digital Elevation Model. Copernicus Programme, European Environment Agency, 2016. URL https://ec.europa.eu/eurostat/web/gisco/geodata/digital-
elevation-model/eu-dem.

Copernicus Programme, European Environment Agency, 2016. URL https://ec.europa.eu/eurostat/web/gisco/geodata/digital-elevation-model/eu-dem.
S. M. Lundberg and S.-Il. Lee. A unified approach to interpreting model predictions. Advances in neural information processing systems, 30, 2017.

J. R. Meijer, M. A. J. Huijbregts, K. C. G. J. Schotten, and A. M. Schipper. Global patterns of current and future road infrastructure. Environmental Research Letters, 13(6):064006,
2018. doi: 10.1088/1748-9326/aabd42. URL https://doi.org/10.1088/1748-9326/aabd42.

J. Munioz Sabater. ERA5-Land hourly data from 1950 to present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS), 2019. doi: 10.24381/cds.e2161bac

S. Oliveira, F. Oehler, J. San-Miguel-Ayanz, A. Camia, and J. M. Pereira. Modeling spatial patterns of fire occurrence in mediterranean Europe using multiple regression and
random forest. Forest Ecology and Management, 275:117-129, 7 2012. ISSN 03781127. doi: 10.1016/j.foreco.2012.03.003.

A. J. Tatem. Worldpop, open data for spatial demography, 2017. ISSN 2052-4463. URL https: //doi.org/10.1038/sdata.2017.4.


https://ec.europa.eu/eurostat/web/gisco/geodata/digital-elevation-model/eu-dem
https://ec.europa.eu/eurostat/web/gisco/geodata/digital-elevation-model/eu-dem
https://ec.europa.eu/eurostat/web/gisco/geodata/digital-elevation-model/eu-dem
https://ec.europa.eu/eurostat/web/gisco/geodata/digital-elevation-model/eu-dem
https://ec.europa.eu/eurostat/web/gisco/geodata/digital-elevation-model/eu-dem
https://ec.europa.eu/eurostat/web/gisco/geodata/digital-elevation-model/eu-dem
https://ec.europa.eu/eurostat/web/gisco/geodata/digital-elevation-model/eu-dem

	Slide 1: Scalable & explainable ML for wildfire risk modeling in Southern Europe:  A case-study in Portugal
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 14
	Slide 15
	Slide 16

