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- * Wildfires are among Europe’s most
destructive natural hazards, affecting
ecosystems, economies, and

communities (EEA, 2024).

Wildfires in Europe
* Traditional fire indices rely mainly on
weather, missing key human and

landscape drivers

‘ Oliveira et al., 2012; Dorph et al., 2022).
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driven model to to quantify the scalability and
estimate daily Impact of key robustness in an

wildfire probability predictors unseen region

Model Selection & Performance

<3 Methodology

Predictand

* 50ha 2018 -202

Input: The data is aggregated to 12 x 12 km grid

* Fire season (Jun—-Oct) * Weatherdata (temp, pr, ws, rh)

¢ 50% fire—50% no fire * Topography

Predictors

3 * Land cover

* Human activity

Model performance

Models trained RF model evaluation over
« Support Vector Machine (SVM), 2021 - 2023
Random Forest (RF), K-nearest
neighbors (kNN) and Logistic * Model run daily with the
Regression (LR) classification probability used

to assess wildfire risk.
* (Good agreement between

Model | F1score Logloss historical record of fires and
SVM 0.91 0.38 mean wildfire probability.
RF 0.91 0.38

RF model can successfully
kKNN 0.90 0.72 represent high wildfire risk

LR 0.88 0.44 N areas
RF model selected for -

Model Selection and Explainability scalability and computational
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capture the areas where wildfires variables but
where recorded.

Conclusion & next steps
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