Scalable & explainable ML for wildfire risk modeling
in Southern Europe: A case-study in Portugal

Ophélie Meuriot Jorge Soto Martin
Denmark Technical University Denmark Technical University
ophme@dtu.dk jsoma@dtu.dk

Beichen Zhang Francisco Camara Pereira
Lawrence Berkeley National Laboratory Denmark Technical University
bzhang5@1bl.gov camara@dtu.dk

Martin Drews
Denmark Technical University
mard@dtu.dk

Abstract

Wildfires constitute one of the most devastating natural disasters, with wide impacts
across economic sectors and society in Europe. The study shows how data-driven
models can be used to combine human, topographic, land cover and climate data
to quantify wildfire risk. Four machine learning models are trained on a historical
record of fires (from June to October between 2008 and 2023) in Southern Europe
excluding Portugal. The Random Forest (RF) model (AUC = 0.91 and F1 = 0.85) is
then run daily in Portugal (12 x 12 km grid) during October 2017, a month during
which devastating wildfires were the cause of 51 casualties. The model is found to
represent high-risk areas more accurately than the widely used Fire Weather Index
(FWI). Key features influencing the high fire risk during the period are identified
using explainable Al This study provides a scalable and lightweight model, which
can be used to support climate impact assessments by (1) quantifying high-risk
areas and (2) identifying key drivers to inform adaptation strategies.

1 Introduction

In the recent European Climate Risk Assessment (European Environment Agency, 2024), wildfires
are identified as one of the most critical climate risks in Europe,with confirmed impacts on critical
infrastructure, health, and other key sectors. Modeling wildfire risk remains a complex challenge,
particularly as predictions of fire risk often rely on operational weather indices (Shaples, 2022) which
exclude key factors such as human activities and other ignition sources. This limitation has led to
ongoing debates about their effectiveness in predicting fire activity (Castel-Clavera et al., 2025). With
the growing availability of remotely sensed data, the use of machine learning (ML) to assess wildfire
risk has expanded, enabling the integration of diverse data sources (Bountzouklis et al., 2023; Oliveira
et al., 2012; Dorph et al., 2022). For example, Oliveira et al. (2012) use a combination of climatic,
land cover, and human activity to quantify wildfire risk in the Mediterranean.

So far, most data-driven studies have focused on time-invariant susceptibility maps (Shafapourtehrany,
2023; Erni et al., 2024; Iban and Aksu, 2024). With the growing need to anticipate and respond to
the threat of wildfires, it is crucial to quantify the risk of wildfire under specific weather conditions.
In addition, understanding the key local drivers of wildfire risk are critical to develop successful

Tackling Climate Change with Machine Learning: workshop at NeurIPS 2025.



adaptation measures. The aim of the study is to (1) develop a data-driven wildfire risk model for
Southern Europe which combines factors, such as climate variables, land use, human activity and
topography, to estimate the probability of wildfire occurrence for given daily weather conditions; (2)
use explainable Al to interpret the model by evaluating the contribution of predictors to the wildfire
risk. The modeling framework is shown in Figure 1. This paper is structured as follows: Section 2
describes the data and methods used, Section 3 highlights the key results, and next steps are described
in Section 4.
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Figure 1: Wildfire risk modeling framework.

2 Data and methods

Data selection & processing

Fires recorded between 2008 and 2023 during the fire season (defined as June to October) with
burned areas exceeding 50 ha were obtained from EFFIS (European Forest Fire Information System)
and used as the predictand. Key predictors were selected based on a thorough literature review and
include human infrastructure and land use (Bountzouklis et al., 2023; Oliveira et al., 2012; Zhai et al.,
2023), as well as topographical and climate data (Polash, 2022; Dorph et al., 2022; Milanovi¢ et al.,
2021). In total, 25 variables were aggregated into a common 12 x 12 km grid, providing a balance
between computational efficiency and the ability to capture regional variation in the data. A detailed
list of the variables is provided in Table A of the Appendix.

Generating the ML dataset

The ML dataset includes all of the Southern Europe domain, with the exception of Portugal, which
is later applied as the case study of the fine-tuned model. The years 2008 to 2020 were used for
training, and the years 2021 to 2023 for testing. Unique combinations of location and date, distinct
from the historical record of fires, were selected to generate a balanced dataset consisting of 50% fire
and 50% no fire data. A value of 1 (0) was assigned to the fire (no fire) data, and the corresponding
25 predictors were appended. Similar to Oliveira et al. (2012), pairs of predictors with a Pearson’s
correlation coefficient greater than 0.75 were identified, and one of the correlated predictors was
removed. This process dropped five features to reduce the multicollinearity. Finally, twenty predictors
were standardized by subtracting the mean and dividing by the standard deviation.

Training and testing the ML models

Four models were trained using the Scikit-learn Python library: Support Vector Machine (SVM),
Random Forest (RF), k-Nearest Neighbors (kNN), and Logistic Regression (LR). The models were
selected based on their interpretability, robustness, and performance. They have commonly been used
in classification tasks in climate modelling studies (Polash, 2022; Milanovi¢ et al., 2021; Oliveira
et al., 2012). The model hyperparameter tuning was performed on the training data with a 5-fold
cross-validation using the F1 score. The final model selection was performed on the testing data and
evaluated using three metrics: the F1 score, logarithmic loss, and Area Under the Curve (AUC).

Assessing the scalability of the model

In October 2017, devastating wildfires were recorded in Portugal, leading to 51 fatalities (Viegas et al.,
2019). This month was selected to assess the performance and scalability of the model to unseen
data. The Fire Weather Index (FWI), currently adopted by the Copernicus Emergency Management
Service to quantify wildfire danger in Europe, was employed as the baseline to compare with the ML



results. The FWI was calculated from the daily temperature, precipitation, wind speed, and relative
humidity following the method of Van Wagner (1974) .

3 Results

3.1 Model evaluation & selection

The four fine-tuned models with the optimal hyperparameters were evaluated on the testing data,
shown in Table A1l. The RF and SVM present the best-performing models, with the same AUC value
of 0.91 (Figure Al a), the same logarithmic loss of 0.38, and F1 scores of 0.83 and 0.84, respectively
(Table A1). The RF model was selected for further analysis in this study because of its superior
scalability and low computational cost compared to SVM (Zhang et al., 2023). Maps of the wildfire
risk were generated for each day of the testing years (2021 - 2023) and were found to align well with
the locations of the historical fires in the same period (Figure Al b-c).

3.2 Model explainability using SHAP

The SHapley Additive exPlanations (SHAP) method can be used to assess the contribution of each
feature to an individual prediction(Lundberg and Lee, 2017). The SHAP analysis was performed
on the testing data to evaluate how the fine-tuned RF model quantified the fire risk in Southern
Europe. The mean absolute SHAP values show the influence of the top-twelve-ranked features on the
model’s prediction (Figure 2.a). And the layered violin plot provides corresponding interpretability
by indicating the relationship between the feature value, including both magnitude and positive and
negative directions, and its impact on the model’s prediction (Figure 2.b).
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Figure 2: (a) Mean absolute SHAP values of the 12 most important predictors from the RF model
on the testing dataset (b) SHAP value distributions for the same predictors, with colors showing the
impact of the feature values on the output (red = high, blue = low).

The top three features are the monthly precipitation, temperature and relative humidity. Low monthly
precipitation, low relative humidity, and high temperatures have a significant positive impact on the
model’s output, increasing the likelihood of wildfire occurrence (higher wildfire risk). A wide range
of studies has confirmed these patterns, showing the impact of hot and dry periods on wildfire activity
(Dong et al., 2021; Lanet et al., 2024). The next two most important features are the shrub fraction
and the fraction of slope below 15°. The SHAP values also indicate that a higher shrubland fraction
is positively related to the prediction of the occurrence of the wildfire. This provides evidence of
the model’s explainability, as shrublands are among the land cover types most prone to fire and can
spread the fire very rapidly (Stavi, 2019). In contrast, high fractions of slope below 15° negatively
affect the predicted occurrence of wildfire, which was explained in Pereira et al. (2016) that wildfires
have been found to spread faster where the slope is steeper, especially when the slope is uphill.



3.3 Case study: the October 2017 wildfires in Portugal

The RF model was run for each day in October 2017 in Portugal. Figure 3 shows the number of
recorded wildfires greater than 50 ha (panel a), the daily wildfire probability from the ML model
(panel b) and FWI values (panel c) on the 15" of October. The date was selected as it was one of
the days with the most recorded fires in the data. Most of the fires were recorded in the northwest of
Portugal. On that day, all of Portugal was classified as being in a very high (FWI > 38) or extreme
(FWI > 50) fire danger area, according to the EFFIS categories. The FWI is, however, not able to
specifically depict the areas where wildfires were recorded. In contrast, the region with the higher
wildfire probability (0.8-1.0) calculated by the RF model aligns closely with the recorded fires on the
same day.
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Figure 3: (a) Historical number of fires recorded per grid cell (b) Wildfire probability from the RF
model (c) Fire Weather Index (FWI) on 15% of October 2017 (d) Time series of the ML probability
at the grid cell with the most fires recorded in October 2017 (red cross in (a)) as well as the SHAP
values for the top 6 features.

The time series of the RF model probability at one specific grid cell (grid cell with the most recorded
fires - red cross in Figure 3.a), along with the SHAP values of the top 6 features obtained from a
SHAP analysis on the dataset of Portugal in October 2017 are shown in Figure 3.d. The recorded fires
occurred in the first half of the month, coinciding with high ML probabilities (> 0.7). From the 16%
of October onward, the predicted probabilities of wildfire occurrence drop, and no additional fires
were recorded. Monthly precipitation presents the highest mean absolute SHAP value, followed by
relative humidity, weekly precipitation, and temperature, all of which drop in the middle of the month,
in agreement with the drop in the predicted probability. The shrub fraction and the slope fraction
below 15° also contributed to the model output, helping to explain why certain regions are more
vulnerable to wildfire risk: The areas that experienced fires correspond to regions with mountainous
terrain and a high proportion of shrubs, underscoring their susceptibility to wildfire (Figure A2).

4 Conclusion

In this study, four ML models were trained on a combined dataset of weather, human activity,
topography, and land cover, and wildfire records in Southern Europe (excluding Portugal). The RF
model (AUC = 0.91, F1 score = 0.85) was found to identify areas at high risk of wildfires more
accurately than the FWI during the devastating October 2017 fires in Portugal, a region unseen
by the model. The results highlight the scalability of the model and the added value of including
non-weather variables. Using explainable Al, the most influential factors behind wildfire risk were
identified, improving both the interpretability and trustworthiness of the model. This information
can enable regional authorities in targeting zones with elevated fire probability and selecting relevant
adaptation measures. Although demonstrated in one case, the framework is adaptable to other regions
and time periods. Ongoing work focuses on assessing how wildfire risk evolves under different
Shared Socioeconomic Pathways, incorporating novel datasets that not only represent the future
climate but also its interaction with different land uses (Asselin et al., 2024).



Data Availability

Fire data was obtained from the European Forest Fire Information System (EFFIS) (Forest Fire
Emergency Copernicus, 2025). The land cover data was obtained from the CORINE Land Cover
inventory (European Environment Agency, 2020). The ERAS5-Land variables were retrieved from the
Climate Data Store (CDS) of Copernicus, available at (Muifioz Sabater, 2019). Topographical data
was accessed through the Eurostat digital elevation model of Europe (GISCO, 2016). Power lines and
road network data were extracted from (Arderne et al., 2020) and (Meijer et al., 2018), respectively.
The population density was gathered from (Tatem, 2017). All datasets were processed using Python,
standard geospatial libraries, and GIS software (QGIS). Upon publication of this paper, a GitHub
repository will be made public with all code available.
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A Appendix

Training Testing
Hyperparameters Best score from
Model (selected ones for testing in blue) CV (F1) AUC F1 Logloss
C: [0.1, 1, 10, 100, 1000]
SVM gamma: [1, 0.1, 0.01, 0.001, 0.0001] 0.87 0.91 0.84 0.38

kernel: [’rbf’]

n_estimators: [50, 100, 150, 200]
max_depth: [5, 10, 15, 20, 25, 30]
kNN n_neighbors: [5, 10, 15, 20, 25, 30, 35] 0.86 0.90 0.83 0.72

C: [0.001, 0.01, 0.1, 1, 10, 100, 1000
solver: [[newton—cg’, ’Ibfgs’, ’liblinear’, ’szig’, ’saga’] 0.84 0.88 0.81 0.44
Table Al: Comparison of machine learning models (SVM, RF, kNN, and LR) with the list of
hyperparameters used for model tuning (with selected values highlighted in blue), best cross-validation
F1 scores, and testing performance metrics (AUC, F1, and Logloss)

RF 0.88 0.91 0.83 0.38

LR
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Figure Al: (a) ROC curves for the 4 models on testing data. (b) Historical recorded fires (c) Mean
ML probability from RF model during the fire season between 2021 - 2023.
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Figure A2: Slope fraction < 15° and shrubland fraction



Table A2: Categories and variables used as predictors in the model

Dataset Type  Variable Description Source
Climate Data Temperature oC
Wind Speed m/s
Relative Humidity %
All variables represent the midday
Daily value, obtained at local noon. Derived
Precipitation m variables (e.g., 7-day moving averages ERAS5-Land, 0.1° hourly
or weekly sums) are based on data from 1959 to present
Weekly m aggregate noon data up to the (Muiioz Sabater, 2019)
precipitation Sum reference day. The value of the nearest
ERAS5-Land grid has been used
Monthly m
precipitation Sum
3 Months m
precipitation sum
Topographic Mean Elevation m Average elevation above the sea level
for the grid cell
Proportion (0-1) of the grid cell area
o -
Slope >30 where the slope exceeds 30°
Proportion (0-1) of the grid cell area o .
15° < Slope < 30° - where the slope is between 15° and Digital Elevation model
300 over Europe, 30 m (GISCO,
2016)
Proportion (0-1) of the grid cell area
o -
Slope <15 where the slope is below 15°
Aspect N -
Aspect E - Proportion (0-1) of the grid cell area
Aspect S - covered by each aspect direction:
Aspect W - North, East, South, and West
Land Cover  Grassland -
Broadleaf Forest -
Proportion (0-1) of the grid cell area
Evergreen Forest _ covered by each different land cover CORINE Land Cover 100m
type. The classes have been obtained (European Environment
Cropland _ following the categories from Zhaiet  Agency, 2020)
Shrubland - al. (2023)
Urban -
Water -
Ratio between the sum of total
Human available road network length, Global Roads Inventory
Infrastructure  Road Density m/km?  including highways, primary, Project (GRIP) dataset
secondary and tertiary roads and cell (Meijer et al. 2018)
area
Power Line ,  Ratio between the total sum of electric Globa} Fower System
Densit m/km lines within a cell and its area Mapping dataset
y (Arderne et al. 2020)
Population 2 . . . o WorldPop Global Population
Density per/ km*  Ratio of inhabitants per grid cell dataset (Tatem, 2017)
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