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Figure 1. ERAS5 data and weather station observations exhibit foundational distribution S 40 Random U.S. locations
misalignments. ERAS5 is known for its spatial smoothness and often fails to reflect true » Test stations 20 3
local values, while weather stations exhibit greater variance. Can we, using station - _
observations, adjust ERAS to better re.ﬂect these st.ation—le.ve.l vgriable.s? Fur.thermore, = 5 30- Mean [mprovement ~ .
can we downscale ERAS to capture this station variance within its native grid cells? 0| at 42.0 km = 20.7% | = e a—— B T T T T T
5 Variables | 5 = . — . B 2020 . .
m 6 8 10 . 12 -1 0 1 2 3 4 5 6 6 8 10 12 14 16 18 20 -4 -2 0 2 4 6
o 10-meter U-Component of Wind (m/s) Error (m/s) 2-meter Temperature (°C) Error (°C)
2. Method and Datasets | wio | 2
\: 20 1 f— VIO z e) Difference: ERA5-Flow at ERAS Grid - ERAS f) Absolute Error Reduction at Test Stations e) Difference: ERA5-Flow at ERAS Grid - ERAS f) Absolute Error Reduction at Test Stations
I I Q wel - ‘__,é____________i _______ - | s T - ! °
CD-Flow d — um | o | .
< —— d&2m [10 3 ol | il |
e —— = 10 IS " | ey s i - e
Back-Initialization Q S o , e S R0 . e
E ~ 415 / a | | 415 | | 1 oo oe®
D] ! ! ! i ! : 340 | L i 340
2 5 : ° maommm T - | .
1. Flow Inteqrat; = I T - L ° ' 0 ' H o
g at,on g O 1 . -8i2° -81!.5° -8il° -82).5° - i ° -79.5° -82° -81.5° -81° -80.5° -80° -79.5° > - . o _‘“-j: 777777 - - ° - :. o > -119° 4?;? -118° -117.5° -117° -116.5°
B 7 6 -5 4 3 2 - 0 2 3 4 5 6 ' ' ; ;
------ D;fference (mls) Error Reduction (1m/s) B ! ? Differe?lce (°C) ? Error RedgCﬁOH (°C) ’ ‘ ’
; B N S o 00 ' 130O Figure 6. Case study for 10-meter horizontal wind (u10) on  Figure 7. Case study for 2-meter Temperature (t2m) on
5_NN distance to assimilated stations (km) January 1, 2020, at 00:00 UTC. This figure highlights the area January 1, 2020, at 00:00 UTC. This figure highlights the
with the most correction for u10, located around the Great  area with the most correction for t2m, located around Los
Figure 4. Per-variable improvement vs. 5-NN distance to assimilated stations. Lines show Lakes region. Large wind errors were identified along the Angeles. Because of the region's proximity to the sea and
u10, v10, t2m, and d2m relative RMSE improvement A% =100 (1 — ERA5-Flow/ERA5) as a shore, which are corrected by Guidance++. mountains, the temperature varies greatly with space. In
function of mean 5-NN distance. Improvements are highest near stations and decay with the ERAS data, mountains are not cold enough and cities are
distance; winds decline more gradually than temperatures. The annotation marks the 7, FUtu e WOrk not hot enough; these biases are corrected by Guidance++.
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Figure 2. Overview of CD-Flow, an improved version of D-Flow. CD-Flow optimizes the improvement (~20.7%). This confirms that Guidance++ captures station variance, Downscallng ERAS with foundation model embeddmgs and satellite IMages

initial noise x0 through end-to-end backpropagation. demonstrating its promise for downscaling. Multi-sensor data assimilation



