

Saving Wildlife with Generative AI: Latent Composite Flow Matching for Poaching Prediction

Lingkai Kong^{1*}, Haichuan Wang^{1*}, Charles A. Emogor^{1,2},

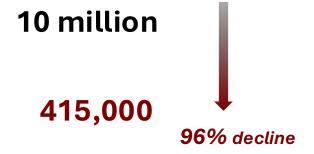
Vincent Borsch-Supan¹, Lily Xu³, Milind Tambe¹

¹ Harvard University

² University of Cambridge

³ Columbia University

The Biodiversity Crisis



1 million species in danger of extinction

Slide Credit: Lily Xu

The biodiversity Crisis is also a Climate Crisis

Biodiversity Loss Fuels Climate Change

Climate Change Accelerates **Biodiversity Loss**

- Fewer species = weaker ecosystems
 Oceans and poles under stress
- Degraded ecosystems release carbon Warming, droughts, wildfires destroy habitats

Protecting biodiversity is protecting our climate.

Joint IPBES-IPCC Report (2021): Nature-based solutions can provide onethird of needed climate mitigation.

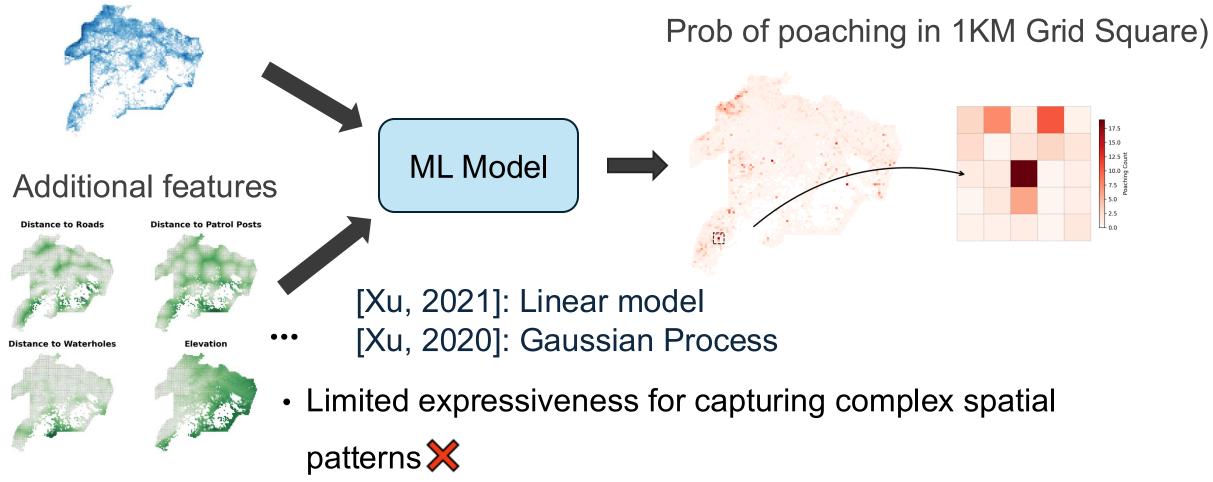
Poaching Threatens Biodiversity

- Poaching: the illegal hunt or capture of wild animals
- Threatens animal populations, biodiversity, ecosystem and climate

Ranger Patrols to Prevent Poaching

Machine Learning for Poaching Prediction

Historical patrol effort (km)

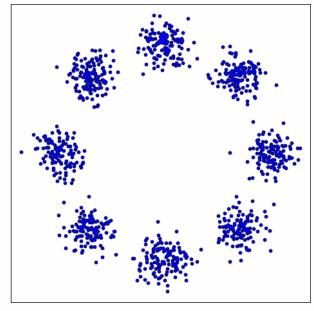


Background on Flow Matching

- Idea: learn a time-varying velocity field $v(\psi^{(s)}, s)$
- Start $\psi^{(0)} \sim p_0$, integrate $\psi^{(1)} = \psi^{(0)} + \int_0^1 v(\psi^{(s)}, s) ds$ to reach p_1
- p_0 : flexible, not restricted to standard Gaussian as in diffusion

models

- Conditional version:
 - $_{\circ}$ feature conditioned velocity field $v(\psi^{(s)},s,\mathbf{c})$
 - historical patrol effort and terrain features
- Good at capturing complex patterns and provide predictive uncertainty



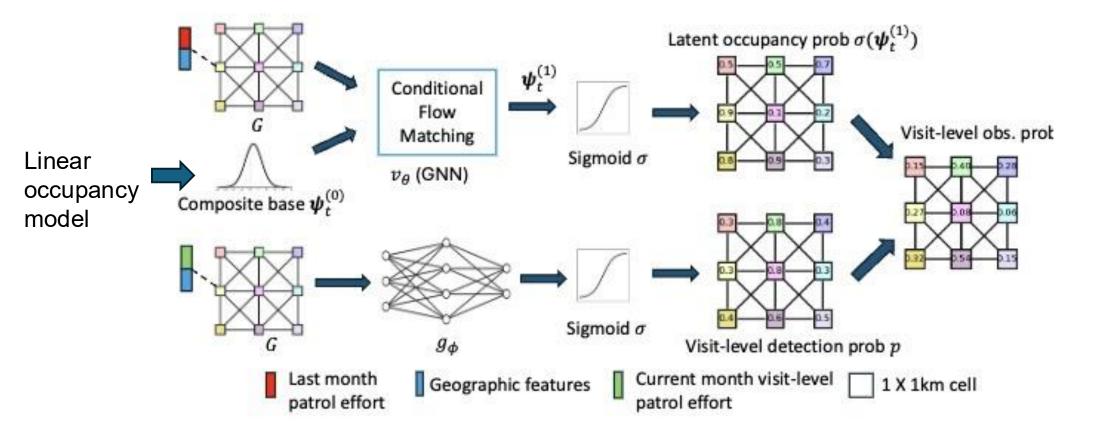
Challenges

- Imperfect Detection
 - Snares/traps are well hidden
 - Detection varies by habitat, visibility, and patrol effort

- Strong nonstationarity: staffing, land use, economic shifts
- Only most recent (~3) years of data are usable
- Our solution: WildFlow!

Photo Credit: League

Overview of WildFlow



- Small Data: Composite base distribution from a linear occupancy model
- Imperfect Detection: Flow matching + occupancy model

Training Challenges

Linear path flow matching training objective

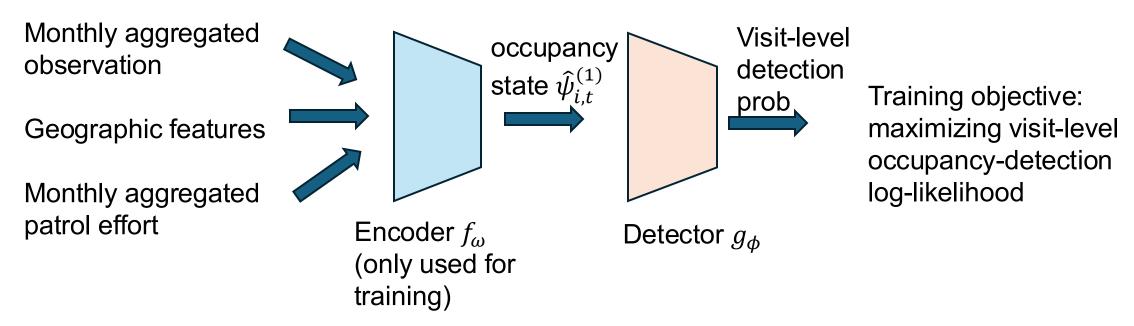
$$\begin{split} \psi^{(s)} &= (1-s)\psi^{(0)} + s\psi^{(1)} \\ \mathcal{L}_{\text{FM}}(\theta) &= \mathbb{E}_{\mathbf{c} \sim p_{\text{data}}(\mathbf{c}), \ \psi^{(1)} \sim p_{\text{data}}(\cdot|\mathbf{c}),} \left\| v_{\theta}(\psi^{(s)}, s; \mathbf{c}) - \left(\psi^{(1)} - \psi^{(0)}\right) \right\|_{2}^{2}, \\ \psi^{(0)} \sim p_{0}(\cdot|\mathbf{c}), \ s \sim \mathcal{U}(0, 1) \end{split}$$

Target velocity, linear path

- We need to have samples $\psi^{(1)}$ from the target distribution
- We do not have the true occupancy state for the training

Two-stage Training Algorithm

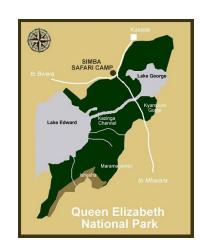
Stage I: Encoder-detector training



- Stage II: Training Latent Flow Matching
 - Use the surrogate occupancy state $\hat{\psi}_{i,t}^{(1)}$ from the encoder as the target

Experimental Setup

- Two National Parks:
 - Murchison Falls and Queen Elizabeth
- Training Dataset:
 - We use a moving window strategy, only use the previous 3 years data to predict the next year
- Evaluation
 - Prediction: probability of at least one detection in the month,
 - ground-truth, binary monthly label
 - Area under the precision-recall curve (AUPR)



Experimental Results

Park	Year	LogReg	GP	MLP	GNN	Transformer	Diffusion	Ours
MFNP	2017	0.305	0.278 ± 0.001	0.288 ± 0.017	0.336 ± 0.004	0.314 ±0.016	0.313 ±0.021	0.374 ±0.032
	2018	0.344	$0.308 \pm \! 0.002$	0.325 ± 0.004	0.260 ± 0.000	0.302 ± 0.064	$0.279 \pm\! 0.001$	0.377 ± 0.011
	2019	0.406	$0.359 \pm \! 0.002$	0.388 ± 0.007	0.526 ± 0.015	0.475 ± 0.141	$0.362 \pm \! 0.003$	0.409 ± 0.009
	2020	0.421	$0.401\; {\pm}0.003$	$0.408 \pm \! 0.004$	0.366 ± 0.014	$0.327 \pm \! 0.002$	$0.439 \pm \! 0.023$	0.473 ± 0.006
	2021	0.360	$0.364 \pm\! 0.011$	0.335 ± 0.010	0.430 ± 0.023	0.295 ± 0.085	$0.342 \pm \! 0.032$	0.423 ± 0.004
	Avg	0.367	0.342	0.349	0.384	0.343	0.347	0.411
QENP	2014	0.119	0.107 ± 0.003	0.103 ± 0.003	0.136 ± 0.013	0.100 ±0.002	0.102 ± 0.003	0.116 ± 0.009
	2015	0.180	$0.156 \pm \! 0.002$	$0.172 \pm \! 0.006$	0.111 ± 0.000	$0.173 \pm \! 0.016$	$0.162\; {\pm}0.028$	0.201 ± 0.017
	2016	0.258	$0.220\; {\pm}0.005$	$0.227\ {\pm}0.004$	0.238 ± 0.009	0.220 ± 0.019	0.201 ± 0.034	0.299 ± 0.027
	Avg	0.186	0.161	0.167	0.162	0.164	0.155	0.205

Table 1: AUPR comparison on MFNP and QENP. All methods use a linear detection head for a fair comparison. Cells in green indicate a clear winner (best mean and the runner-up lies outside the winner's std), while yellow denotes a practical tie (within one std of the best). LogReg is trained with deterministic optimization and therefore has no variance.

Improve AUPR by 7% and 10% than the strongest baseline in MFNP and QENP

Ablation Study

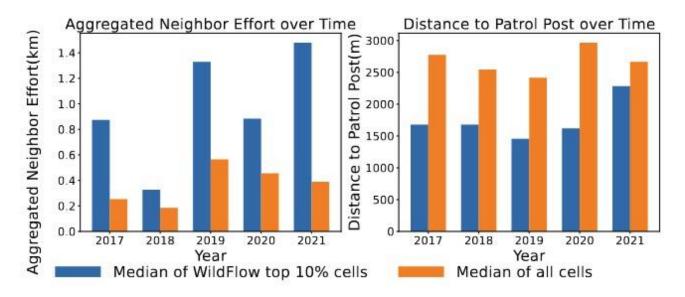
Year	w/o base	w/o det.	Ours
2017	0.341 ± 0.008	0.278 ± 0.011	0.374 ± 0.032
2018	0.368 ± 0.019	0.265 ± 0.006	0.377 ± 0.011
2019	0.382 ± 0.006	0.301 ± 0.006	0.409 ± 0.009
2020	0.429 ± 0.007	0.350 ± 0.005	0.473 ± 0.006
2021	0.338 ± 0.040	0.290 ± 0.009	0.423 ± 0.004

Table 2: Ablation on MFNP (AUPR).

Removing either the composite base or the detection head leads to a consistent drop in AUPR across all years

Case Study

Compare median features of all cells vs. top 10% where WildFlow outperforms logistic regression



- Largest gains occur near areas with high patrol effort, highlighting WildFlow's strength in modeling displacement-driven dynamics.
- Improved performance near patrol posts, likely due to more reliable detections.

Conclusion and Next Steps

- First generative AI framework for poaching prediction.
- Handle small data and imperfect detection
- Strong empirical performance in two national parks in Uganda
- We are actively looking for partners to conduct field test

GenAl is not only driving commercial success, it's also creating meaningful societal impact!