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The Biodiversity Crisis

In 1990 850,000 100,000 10 million

Today 4,880 3,890 415,000
99.5% 96 % decline 96% decline

decline

1 million species in danger of extinction
Slide Credit: Lily Xu



The biodiversity Crisis is also a Climate Crisis

Biodiversity Loss Fuels Climate Change Accelerates
Climate Change Biodiversity Loss

« T v o
o el

. o
=

» Degraded ecosystems release carbon < Warming, droughts, wildfires destroy habitats
* Fewer species = weaker ecosystems ¢ Oceans and poles under stress

Protecting biodiversity is protecting our climate.
Joint IPBES—-IPCC Report (2021): Nature-based solutions can provide one-
third of needed climate mitigation. 4



Poaching Threatens Biodiversity

* Poaching: the illegal hunt or capture of wild animals
* Threatens animal populations, biodiversity, ecosystem and climate




Ranger Patrols to Prevent Poaching




Machine Learning for Poaching Prediction

Historical patrol effort (km)
Prob of poaching in 1KM Grid Square)

g IS \ ¢

T B
. ML Model | mmmp | -

Additional features [ /\ ]

F [Xu, 2021]: Linear model
— [Xu, 2020]: Gaussian Process
: - Limited expressiveness for capturing complex spatial

patterns 3



Background on Flow Matching

. ldea: learn a time-varying velocity field v(y(®, s)

. Starty(©~p,, integrate YV =y + f01 v(y), s)ds to reach p,
e p,. flexible, not restricted to standard Gaussian as in diffusion

models S
. Conditional version: -Eﬁg _#5
feature conditioned velocity field v(y(, s, c) P ;g‘,,u | ﬁi
historical patrol effort and terrain features H
« (Good at capturing complex patterns and ‘ﬁ" (2 ﬂé
provide predictive uncertainty s




Challenges

« Imperfect Detection WERS S
- Snares/traps are well hidden "~ Photo Gredit:
- Detection varies by habitat, visibility, and patrol effort

« Small Data
- Strong nonstationarity: staffing, land use, economic shifts
- Only most recent (~3) years of data are usable

« Our solution: WildFlow!

L " ),/rﬁ ¢

League

10


https://www.league.org.uk/what-we-do/shooting/snares/

Overview of WildFlow

Latent occupancy prob a(tpgl))

\ : (1)
- Conditional t

= Flow —)
’ - Matchi '
Linear A % Sigmoid o
m) /\_ vg (GNN)
occupancy ; (0)
Composite base ¥,
model
.'."(.’.'_;f-_—ﬁ.f"é‘tﬁ_‘}-._
g Sigmoid o
9¢ Visit-level detection prob p
Last month I] Geographic features I] Current month visit-level 1 X 1km cell
patrol effort patrol effort

« Small Data: Composite base distribution from a linear occupancy model
« Imperfect Detection: Flow matching + occupancy model

11



Training Challenges

* Linear path flow matching training objective

w(s) = (1~ S)w(O) 4+ sw(l)

|

?

[ (%) [ (&

| vo (¥*), 5;¢) — (V) — ()

r '.'l f )
C~PdatalC), ¥ ~Paatal-ic). ||

U M opo(-le), s~U4(0,1) /

Target velocity, linear path

ﬁ[r_\-j(O) —8

» We need to have samples ¥V from the target distribution
* We do not have the true occupancy state for the training

12



Two-stage Training Algorithm

» Stage |: Encoder-detector training

Monthly aggregated Visit-level
observation \ T occupanlcy T detection

tate 5O o
state i, , rob Training objective:
Geographic features ‘ h maximizing visit-level
occupancy-detection

Monthly aggregated / / / log-likelihood

patrol effort Encoder f,, Detector g,
(only used for
training)

« Stage |l: Training Latent Flow Matching
* Use the surrogate occupancy state 1/31(1) from the encoder as the target

13



Experimental Setup

* Two National Parks:
 Murchison Falls and Queen Elizabeth

* Training Dataset:

* We use a moving window strategy, only use the previous 3 years data to
predict the next year

* Evaluation
* Prediction: probability of at least one detection in the month,

* ground-truth, binary monthly label
* Area under the precision-recall curve (AUPR)

14



Experimental Results

Park  Year LogReg GP MLP GNN Transformer Diffusion Ours
2017 0.305 0.278 £0.001 0.288 £0.017 0.336 £0.004 0.314 £0.016 0.313 +£0.021 0.374 +0.032
2018 0.344 0.308 £0.002 0.325 £0.004 0.260 £0.000 0.302 £0.064 0.279 +£0.001 0.377 £0.011

MFENP 2019 0.406 0.359 £0.002 0.388 £0.007 0.526 £0.015 0.475 £0.141 0.362 +£0.003 0.409 +0.009
2020 0.421 0.401 £0.003 0.408 £0.004 0.366 £0.014 0.327 £0.002 0.439 +0.023 0.473 +0.006
2021 0.360 0.364 +£0.011 0.335 £0.010 0.430 +£0.023 0.295 +£0.085 0.342 +0.032 0.423 +0.004
Avg 0.367 0.342 0.349 0.384 0.343 0.347 0.411
2014 0.119 0.107 £0.003 0.103 £0.003 0.136 +0.013 0.100 +£0.002 0.102 +£0.003 0.116 +0.009

QENP 2015 0.180 0.156 +£0.002 0.172 +0.006 0.111 4+0.000 0.173 +0.016 0.162 +0.028 0.201 +0.017
2016 0.258 0.220 £0.005 0.227 £0.004 0.238 £0.009 0.220 £0.019 0.201 +£0.034 0.299 +0.027
Avg 0.186 0.161 0.167 0.162 0.164 0.155 0.205

Table 1: AUPR comparison on MFNP and QENP. All methods use a linear detection head for a fair comparison. Cells in green

indicate a clear winner (best mean and the runner-up lies outside the winner’s std), while yellow denotes a practical tie (within
one std of the best). LogReg is trained with deterministic optimization and therefore has no variance.

Improve AUPR by 7% and 10% than the strongest baseline in
MFNP and QENP



Ablation Study

Year w/o base w/o det. Ours

2017 0.341 +0.008 0.278 4+0.011 0.374 40.032
2018 0.368 +0.019 0.265 +0.006 0.377 +0.011
2019 0.382 +0.006 0.301 +0.006 0.409 +0.009
2020 0.429 +0.007 0.350 £0.005 0.473 +0.006
2021 0.338 +0.040 0.290 +0.009 0.423 +0.004

Table 2: Ablation on MFNP (AUPR).

Removing either the composite base or the detection
head leads to a consistent drop in AUPR across all years



Case Study

Compare median features of all cells vs. top 10% where
WildFlow outperforms logistic regression

__ Aggregated Neighbor Effort over Time Distance to Patrol Post over Time
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« Largest gains occur near areas with high patrol effort, highlighting WildFlow’s
strength in modeling displacement-driven dynamics.
 Improved performance near patrol posts, likely due to more reliable detections.



Conclusion and Next Steps

* First generative Al framework for poaching prediction.

* Handle small data and imperfect detection

* Strong empirical performance in two national parks in Uganda
* We are actively looking for partners to conduct field test

GenAl is not only driving commercial success,
it's also creating meaningful societal impact!

18
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