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Motivation: Wildlife poaching poses a major global threat, and predicting poaching is key to effective patrol planning.

Our Domain: Wildlife Conservation

Figure 1: Well-hidden snares and rangers

conducting a patrol to locate them. Photos: Uganda
Wildlife Authority

Problem Definition

We aim to predict poaching risk in protected areas
data.
divided into 1 x 1km grid cells and monitored

using sparse ranger patro Each park is

monthly. For each cell-month (/, t):

e X; +: static and dynamic features (e.g., elevation,
rainfall, vegetation)

® 2, ; j: patrol effort on visit j (e.g., distance)

e yvi: ;. binary detection (poaching observed or
not)

Poaching is a latent binary variable z; €

{0, 1}, unobserved unless detected. Detection is

imperfect and depends on patrol effort.

Our goal is to estimate the poaching risk p(z; ; =
1) based on historical observations and patrol
behavior.

Background on Flow Matching (FM)

Flow Matching learns a time-dependent velocity

field vy(9(),s) that transports samples from a
source distribution pp at s = 0 to a target

distribution p; at s = 1. Inference is performec

by sampling from py and integrating the learnec
ODE. Conditional Flow Matching extends FM
by conditioning the velocity field vy on context,
enabling flows to adapt to varying environmental

conditions.
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Figure 2: Overview of WildFlow. Upper branch A
composite base initializes latent logits 1p§0) from a
pretrained linear occupancy model with Gaussian
noise. A graph conditional velocity field v
transports 1IJ§O) to ¢§1) via FM. Lower branch the visit
level detector uses geospatial features and current
month visit effort to predict detection probabilities.
Results from both branches are combined to
compute the occupancy-detection likelihood.
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Model Components

e Occupancy Model — Imperfect Detection
We model the true presence of snares as a
latent occupancy probability, and define the
visit-level detection probability as conditional
on this latent state.

e Latent Composite Flow — Data Scarcity
Train a composite flow framework warm-starting
from a base distribution constructed from the

prediction of a linear occupancy model.

Training

e Stage 1: Encoder-detector training
- an encoder that predicts the surrogate latent

occupancy logits

-a detection head that predicts visit-level
detection probabilities

We
maximize the occupancy-detection likelihood.

jointly train two components which

e Stage 2: Latent flow training
We freeze the encoder-detector pair and train a
conditional flow model vy to transport samples

from base to the surrogate latent logits.

Scan to read the full paper
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Experiment Results

Park Year LogReg GP MLP GNN Transformer Diffusion Ours
2017 0.305 0.278 +£0.001 0.288 + 0.017 0.336 £ 0.004 0.314 +0.016 0.313 £ 0.021 0.374 + 0.032
2018 0.344 0.308 +0.002 0.325 + 0.004 0.260 £+ 0.000 0.302 + 0.064 0.279 + 0.001 0.377 £ 0.011

MENP 2019 0.406 0.359 +0.002 0.388 + 0.007 0.526 £ 0.015 0.475 + 0.141 0.362 + 0.003 0.409 + 0.009
2020 0.421 0.401 +£0.003 0.408 + 0.004 0.366 +£0.014 0.327 +0.002 0.439 + 0.023 0.473 £ 0.006
2021 0.360 0.364 +0.011 0.335 +0.010 0.430 +0.023 0.295 +0.085 0.342 + 0.032 0.423 + 0.004
Avg 0.367 0.342 0.349 0.384 0.343 0.347 0.411
2014 0.119 0.107 £ 0.003 0.103 = 0.003 0.136 + 0.013 0.100 £ 0.002 0.102 + 0.003 0.116 + 0.009

QENP 2015 0.180 0.156 £0.002 0.172 + 0.006 0.111 £ 0.000 0.173 +0.016 0.162 + 0.028 0.201 + 0.017
2016 0.258 0.220 +0.005 0.227 + 0.004 0.238 + 0.009 0.220 + 0.019 0.201 + 0.034 0.299 + 0.027
Avg 0.186 0.161 0.167 0.162 0.164 0.155 0.205

e WildFlow outperforms the strongest baselines
in AUPR by an average of 7% and 10% in the
two parks, respectively.

e Linear model remains competitive on small or
noisy poaching data due to less overfitting.
e Diffusion model underperforms, showing the

Importance of an informative initial distribution.

Case Study

Aggregated Neighbor Effort over Time
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e Largest gains occur near areas with high
patrol effort, highlighting WildFlow’s strength in
modeling displacement-driven dynamics.

e \WildFlow better exploits proximity to patrol
posts, likely benefiting from reliable detections.

Takeaway

e The first generative Al framework for poaching
prediction.

e Deployable for real-world conservation efforts.

Acknowledgements

We thank the Uganda Wildlife Authority for data
access from Murchison Falls and Queen Elizabeth

National Parks. This work was supported by ONR
MURI NOO014-24-1-2742.




