

Generative Al Can Save Wildlife!

Saving Wildlife with Generative Al: Latent Composite Flow Matching for Poaching Prediction

Lingkai Kong^{*1}, Haichuan Wang^{*1}, Charles A. Emogor^{1,2}, Börsch-Supan¹, Lily Xu³, Milind Tambe¹

Harvard University, ² University of Cambridge, ³ Columbia University

Motivation: Wildlife poaching poses a major global threat, and predicting poaching is key to effective patrol planning.

Our Domain: Wildlife Conservation

Figure 1: Well-hidden snares and rangers conducting a patrol to locate them. Photos: Uganda Wildlife Authority

Problem Definition

We aim to predict poaching risk in protected areas using sparse ranger patrol data. Each park is divided into 1×1 km grid cells and monitored monthly. For each cell-month (i, t):

- $\mathbf{x}_{i,t}$: static and dynamic features (e.g., elevation, rainfall, vegetation)
- $a_{i,t,j}$: patrol effort on visit j (e.g., distance)
- $y_{i,t,j}$: binary detection (poaching observed or not)

Poaching is a latent binary variable $z_{i,t} \in \{0, 1\}$, unobserved unless detected. Detection is imperfect and depends on patrol effort.

Our goal is to estimate the poaching risk $p(z_{i,t} = 1)$ based on historical observations and patrol behavior.

Background on Flow Matching (FM)

Flow Matching learns a time-dependent velocity field $v_{\theta}(\psi^{(s)}, s)$ that transports samples from a source distribution p_0 at s=0 to a target distribution p_1 at s=1. Inference is performed by sampling from p_0 and integrating the learned ODE. Conditional Flow Matching extends FM by conditioning the velocity field v_{θ} on context, enabling flows to adapt to varying environmental conditions.

Overview of WildFlow

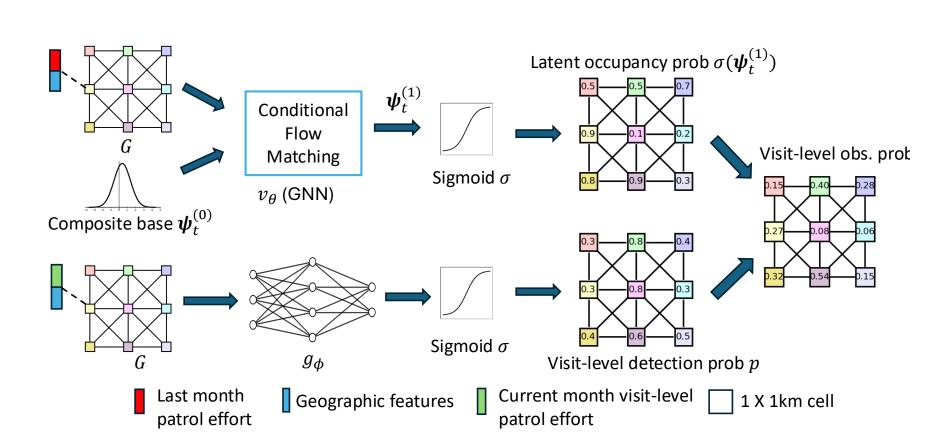


Figure 2: Overview of **WildFlow**. **Upper branch** A composite base initializes latent logits $\psi_t^{(0)}$ from a pretrained linear occupancy model with Gaussian noise. A graph conditional velocity field v_{θ} transports $\psi_t^{(0)}$ to $\psi_t^{(1)}$ via FM. **Lower branch** the visit level detector uses geospatial features and current month visit effort to predict detection probabilities. Results from both branches are combined to compute the occupancy-detection likelihood.

Model Components

Occupancy Model → Imperfect Detection

We model the true presence of snares as a latent occupancy probability, and define the visit-level detection probability as conditional on this latent state.

ullet Latent Composite Flow o Data Scarcity

Train a composite flow framework warm-starting from a base distribution constructed from the prediction of a linear occupancy model.

Training

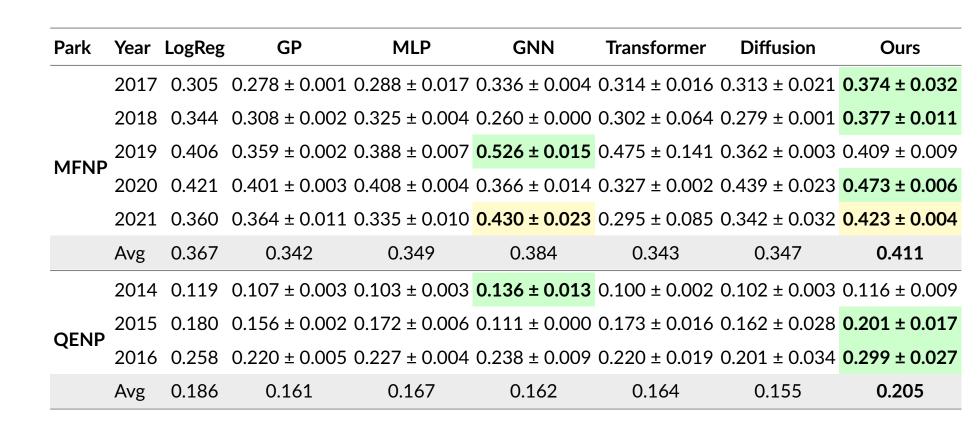
- Stage 1: Encoder-detector training
- an encoder that predicts the surrogate latent occupancy logits
- a detection head that predicts visit-level detection probabilities

We jointly train two components which maximize the occupancy-detection likelihood.

Stage 2: Latent flow training

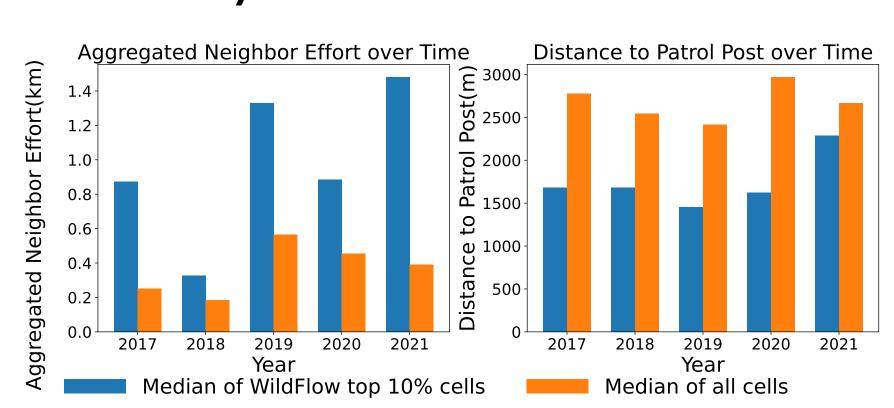
We freeze the encoder-detector pair and train a conditional flow model v_{θ} to transport samples from base to the surrogate latent logits.

Experiment Results



- WildFlow outperforms the strongest baselines in AUPR by an average of 7% and 10% in the two parks, respectively.
- Linear model remains competitive on small or noisy poaching data due to less overfitting.
- Diffusion model underperforms, showing the importance of an informative initial distribution.

Case Study



- Largest gains occur near areas with high patrol effort, highlighting WildFlow's strength in modeling displacement-driven dynamics.
- WildFlow better exploits proximity to patrol posts, likely benefiting from reliable detections.

Takeaway

- The first generative AI framework for poaching prediction.
- Deployable for real-world conservation efforts.

Acknowledgements

We thank the Uganda Wildlife Authority for data access from Murchison Falls and Queen Elizabeth National Parks. This work was supported by ONR MURI N00014-24-1-2742.

