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Motivation: Wildlife poaching poses a major global threat, and predicting poaching is key to effective patrol planning.
Our Domain: Wildlife Conservation

Figure 1: Well-hidden snares and rangersconducting a patrol to locate them. Photos: UgandaWildlife Authority
Problem Definition
Weaim to predict poaching risk in protected areas
using sparse ranger patrol data. Each park is
divided into 1 × 1 km grid cells and monitored
monthly. For each cell–month (i , t):
• xi ,t: static and dynamic features (e.g., elevation,
rainfall, vegetation)

• ai ,t,j : patrol effort on visit j (e.g., distance)
• yi ,t,j : binary detection (poaching observed or
not)

Poaching is a latent binary variable zi ,t ∈
{0, 1}, unobserved unless detected. Detection is
imperfect and depends on patrol effort.
Our goal is to estimate the poaching risk p(zi ,t =
1) based on historical observations and patrol
behavior.
Background on Flow Matching (FM)
Flow Matching learns a time-dependent velocity
field vθ(ψ

(s), s) that transports samples from a
source distribution p0 at s = 0 to a target
distribution p1 at s = 1. Inference is performed
by sampling from p0 and integrating the learned
ODE. Conditional Flow Matching extends FM
by conditioning the velocity field vθ on context,
enabling flows to adapt to varying environmental
conditions.
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Figure 2: Overview ofWildFlow. Upper branch Acomposite base initializes latent logits ψ(0)t from apretrained linear occupancy model with Gaussiannoise. A graph conditional velocity field vθtransports ψ(0)t to ψ(1)t via FM. Lower branch the visitlevel detector uses geospatial features and currentmonth visit effort to predict detection probabilities.Results from both branches are combined tocompute the occupancy-detection likelihood.
Model Components
•Occupancy Model→ Imperfect Detection
We model the true presence of snares as a
latent occupancy probability, and define the
visit-level detection probability as conditional
on this latent state.

• Latent Composite Flow→ Data Scarcity
Train a composite flow frameworkwarm-starting
from a base distribution constructed from the
prediction of a linear occupancy model.

Training
•Stage 1: Encoder-detector training
– an encoder that predicts the surrogate latent
occupancy logits

– a detection head that predicts visit-level
detection probabilities

We jointly train two components which
maximize the occupancy-detection likelihood.

• Stage 2: Latent flow training
We freeze the encoder-detector pair and train a
conditional flow model vθ to transport samples
from base to the surrogate latent logits.

Experiment Results
Park Year LogReg GP MLP GNN Transformer Diffusion Ours

MFNP

2017 0.305 0.278 ± 0.001 0.288 ± 0.017 0.336 ± 0.004 0.314 ± 0.016 0.313 ± 0.021 0.374 ± 0.032
2018 0.344 0.308 ± 0.002 0.325 ± 0.004 0.260 ± 0.000 0.302 ± 0.064 0.279 ± 0.001 0.377 ± 0.011
2019 0.406 0.359 ± 0.002 0.388 ± 0.007 0.526 ± 0.015 0.475 ± 0.141 0.362 ± 0.003 0.409 ± 0.009
2020 0.421 0.401 ± 0.003 0.408 ± 0.004 0.366 ± 0.014 0.327 ± 0.002 0.439 ± 0.023 0.473 ± 0.006
2021 0.360 0.364 ± 0.011 0.335 ± 0.010 0.430 ± 0.023 0.295 ± 0.085 0.342 ± 0.032 0.423 ± 0.004
Avg 0.367 0.342 0.349 0.384 0.343 0.347 0.411

QENP
2014 0.119 0.107 ± 0.003 0.103 ± 0.003 0.136 ± 0.013 0.100 ± 0.002 0.102 ± 0.003 0.116 ± 0.009
2015 0.180 0.156 ± 0.002 0.172 ± 0.006 0.111 ± 0.000 0.173 ± 0.016 0.162 ± 0.028 0.201 ± 0.017
2016 0.258 0.220 ± 0.005 0.227 ± 0.004 0.238 ± 0.009 0.220 ± 0.019 0.201 ± 0.034 0.299 ± 0.027
Avg 0.186 0.161 0.167 0.162 0.164 0.155 0.205

•WildFlow outperforms the strongest baselines
in AUPR by an average of 7% and 10% in the
two parks, respectively.

• Linear model remains competitive on small or
noisy poaching data due to less overfitting.

•Diffusion model underperforms, showing the
importance of an informative initial distribution.
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•Largest gains occur near areas with high
patrol effort, highlightingWildFlow’s strength in
modeling displacement-driven dynamics.

•WildFlow better exploits proximity to patrol
posts, likely benefiting from reliable detections.

Takeaway
•The first generative AI framework for poaching
prediction.

•Deployable for real-world conservation efforts.
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