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Abstract

Poaching poses significant threats to wildlife and biodiversity. A valuable step in re-
ducing poaching is to forecast poacher behavior, which can inform patrol planning
and other conservation interventions. Existing poaching prediction methods based
on linear models or decision trees lack the expressivity to capture complex, nonlin-
ear spatiotemporal patterns. Recent advances in generative modeling, particularly
flow matching, offer a more flexible alternative. However, training such models
on real-world poaching data faces two central obstacles: imperfect detection of
poaching events and limited data. To address imperfect detection, we integrate flow
matching with an occupancy-based detection model and train the flow in latent
space to infer the underlying occupancy state. To mitigate data scarcity, we adopt a
composite flow initialized from a linear-model prediction rather than random noise
which is the standard in diffusion models, injecting prior knowledge and improving
generalization. Evaluations on datasets from two national parks in Uganda show
consistent gains in predictive accuracy.

1 Introduction

Biodiversity loss is not only a conservation crisis but also a climate challenge: the decline of keystone
species disrupts ecosystems, diminishes carbon storage, and weakens resilience to climate change [1].
Wildlife poaching is a major driver of this loss. Elephants, pangolins, and lions face intense hunting
pressure—tens of thousands are killed annually for ivory, scales, or body parts—threatening both
species survival and ecosystem stability [2–4]. A central challenge is how to allocate limited patrol
resources to the locations where they can most effectively deter poaching.

Figure 1: Snares and rangers conducting a
patrol. Photo: Uganda Wildlife Authority.

Machine learning has been applied to forecast poach-
ing risk and guide patrol planning. However, existing
models—such as linear and tree-based approaches [5–
7]—struggle to capture complex spatial dependencies
and poachers’ adaptive strategies. They often make
simplifying independence assumptions, leading to in-
accurate risk maps and suboptimal patrol deployment.
Recent advances in generative AI, such as diffusion
models [8] and flow matching [9], provide powerful
tools for modeling high-dimensional and strategic
behavior. Yet applying these methods to poaching
data presents two key challenges: (i) data scarcity,
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Figure 2: Overview of the latent composite flow framework. Upper branch (latent generation):
1× 1 km cells are nodes in a graph G with edges between adjacent cells. For month t, node features
comprise geospatial covariates xi,t and last month’s aggregated patrol effort ami,t−1 =

∑
j ai,t−1,j .

A composite base initializes the latent logits ψ(0)
t from a pretrained linear occupancy model with

Gaussian perturbation. A graph-conditional velocity field vθ transports ψ(0)
t to ψ(1)

t via conditional
flow matching; σ(ψ(1)

t ) yields occupancy probabilities. Lower branch (detection): the visit-level
detector gϕ(xi,t, ai,t,j) uses geospatial features and current-month visit effort to produce detection
probabilities {pi,t,j}, which are combined with occupancy in the occupancy–detection likelihood.

since historical records are limited in many parks, and (ii) imperfect detection, as many poaching
incidents remain unseen due to hidden snares or dense vegetation [10].

We address these challenges with WILDFLOW, a latent composite flow matching framework. Building
on ecological occupancy models [11], we represent poaching activity as a latent state separate from
imperfect detection, enabling explicit handling of missing signals. To mitigate data scarcity, we
introduce a composite flow that initializes the generative process from a linear model’s predictions
rather than random noise, embedding domain knowledge to improve generalization. On real-world
datasets from two Ugandan national parks, WILDFLOW improves AUPR by 7–10% over baselines
demonstrating the potential of generative AI to strengthen conservation and climate resilience.

2 Related Works
Early work in conservation security used behavioral models such as SUQR in PAWS [12]. Imperfect
detection was later addressed via Bayesian networks with latent variables [13], though these proved
brittle in practice, where decision-tree ensembles were more accurate and efficient [7]. Hybrid
approaches combined geo-clustering with ensembles of decision trees [14], while stratified ensembles
of weak learners (trees, Gaussian processes) tackled uncertainty from uneven patrol effort and were
deployed in SMART [15–17]. Logistic regression has also been used to quantify deterrence effects of
ranger patrols [5]. Despite these advances, most approaches rely on classical models that struggle
with high-dimensional, nonlinear spatial patterns, and few exploit modern deep learning.

3 Background
3.1 Problem Definition

We study two Ugandan parks: Murchison Falls (MFNP, ∼5,000 km2) and Queen Elizabeth (QENP,
∼2,500 km2), both critical for biodiversity, carbon storage, and ecotourism [18]. Each park is
partitioned into 1×1 km cells i ∈ {1, . . . , N} and months t ∈ {1, . . . , T}. For each cell–month,
features xi,t include static geospatial attributes (e.g., elevation, distance to rivers) and dynamic
covariates (e.g., precipitation, temperature, productivity). The latent occupancy state zi,t ∈ {0, 1}
indicates whether poaching occurs. Rangers conduct GPS-tracked patrols and record observations. In
month t, cell i may be visited Ji,t times, with patrol effort ai,t,j and binary detection outcome yi,t,j .

We aim to forecast poaching risk p(zi,t = 1) using features {xi,t} and past effort {ai,t−1,j}, while
explicitly modeling visit-level effort {ai,t,j} and imperfect detection.
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3.2 Preliminaries on Flow Matching

To capture complex spatial structure, we adopt flow matching (FM), a generative framework that
learns a time–dependent velocity field to transport a base distribution toward the data distribution [9].
FM enables faster sampling than diffusion models [8], while often achieving comparable quality.

In this work, we focus on the conditional version. At flow time s=02, FM draws a base sample
ψ(0)∼p0(· | c) and evolves it under a conditional velocity field dψ(s)

ds = vθ
(
ψ(s), s; c

)
, where c

denotes contextual information. Integrating from s=0 to s=1 yields ψ(1), a sample from pdata(· | c).
While FM can capture complex spatial patterns, it does not by itself address (i) imperfect detection
and (ii) small data in conservation.

4 Proposed Method
We introduce WILDFLOW, a latent composite flow-matching framework that captures high-
dimensional spatial patterns in poaching prediction while addressing imperfect detection and data
scarcity. Figure 2 shows the overview of the data generation process.

Imperfect detection. Following ecological occupancy models [11], we represent poaching activity
as a latent state zi,t ∈ {0, 1}, distinct from visit-level detection outcomes yi,t,j . Given patrol effort
ai,t,j , detection probability is pi,t,j = σ

(
gϕ(xi,t, ai,t,j)

)
, and the occupancy–detection likelihood is

Locc(i, t) = log
[
(1− ri,t)(1− Si,t) + ri,t

∏
j p

yi,t,j
i,t,j (1− pi,t,j)

1−yi,t,j
]
, (1)

where ri,t = σ(ψ
(1)
t ) is the latent occupancy probability and Si,t indicates at least one detection. To

model the latent occupancy logits, we adopt conditional flow matching:

dψ
(s)
t

ds = vθ
(
ψ

(s)
t , s; Ct

)
, s ∈ [0, 1],

where Ct denotes cell features and past patrol effort, and vθ is a graph-based velocity field propagating
spatial context.

Data scarcity. To improve data efficiency, we depart from the standard Gaussian initialization used
in existing flow matching and diffusion models, and instead warm-start the flow from a composite
base: ψ(0)

t ∼ N (bη(Ct), σ
2
0I), where bη is a linear occupancy predictor and Ct denotes covariates

and past patrol effort. This initialization injects domain priors while still allowing stochastic variation,
leading to more data-efficient learning.

Training We adopt a two-stage procedure: (i) an encoder fω maps monthly observations, envi-

ronmental features, and patrol effort into latent logits ψ̂
(1)

t , which are optimized jointly with the
detection head gϕ by maximizing

∑
i,t Locc(i, t); (ii) we then freeze (fω, gϕ) and train the flow model

vθ to transport samples from the composite base ψ(0)
t toward the encoder’s surrogate logits ψ̂

(1)

t via
squared-error flow matching.

5 Experiments
5.1 Setup

Data. We use ranger patrol and poaching records from MFNP (2014–2021) and QENP (2011–2016),
provided by the Uganda Wildlife Authority. Following [19], we focus on historically high-risk
subregions by selecting the 20 most active cells each month and expanding to groups of ≤ 25 adjacent
cells. To handle non-stationarity, training for each test year uses the preceding three years of data [16].

Baselines. All methods share the same linear detection head. For latent occupancy we compare:
Logistic Regression (LogReg), Gaussian Process (GP), MLP, Graph Neural Network (GNN), Trans-
former, Diffusion model, and our method. Full details are in Appendix A.4.

Metric. Since true poaching states are unobserved, we evaluate detection-level outcomes. For each
cell–month, we compute the probability of at least one detection and compare against observed
monthly labels using area under the precision–recall curve (AUPR).

2Throughout, t indexes months in the poaching data, while s ∈ [0, 1] parameterizes the generative flow.
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Park Year LogReg GP MLP GNN Transformer Diffusion Ours

MFNP

2017 0.305 0.278±0.001 0.288±0.017 0.336±0.004 0.314±0.016 0.313±0.021 0.374 ±0.032

2018 0.344 0.308±0.002 0.325±0.004 0.260±0.000 0.302±0.064 0.279±0.001 0.377 ±0.011

2019 0.406 0.359±0.002 0.388±0.007 0.526 ±0.015 0.475±0.141 0.362±0.003 0.409±0.009

2020 0.421 0.401±0.003 0.408±0.004 0.366±0.014 0.327±0.002 0.439±0.023 0.473 ±0.006

2021 0.360 0.364±0.011 0.335±0.010 0.430 ±0.023 0.295±0.085 0.342±0.032 0.423 ±0.004
Avg 0.367 0.342 0.349 0.384 0.343 0.347 0.411

QENP

2014 0.119 0.107±0.003 0.103±0.003 0.136 ±0.013 0.100±0.002 0.102±0.003 0.116±0.009

2015 0.180 0.156±0.002 0.172±0.006 0.111±0.000 0.173±0.016 0.162±0.028 0.201 ±0.017

2016 0.258 0.220±0.005 0.227±0.004 0.238±0.009 0.220±0.019 0.201±0.034 0.299 ±0.027
Avg 0.186 0.161 0.167 0.162 0.164 0.155 0.205

Table 1: AUPR comparison. All methods use a linear detection head for a fair comparison. Cells in
green indicate a clear winner, while yellow denotes a practical tie.

Year w/o base w/o det. Ours

2017 0.341 ±0.008 0.278 ±0.011 0.374 ±0.032
2018 0.368 ±0.019 0.265 ±0.006 0.377 ±0.011
2019 0.382 ±0.006 0.301 ±0.006 0.409 ±0.009
2020 0.429 ±0.007 0.350 ±0.005 0.473 ±0.006
2021 0.338 ±0.040 0.290 ±0.009 0.423 ±0.004

Table 2: Ablation on MFNP (AUPR).
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Figure 3: Case study on MFNP.

5.2 Results

Table 1 reports results on MFNP and QENP. We summarize our findings as follows. (1) WILDFLOW
consistently outperforms baselines, improving AUPR by 7.0% on MFNP and 10.2% on QENP.
(2)Interestingly, the simple LogReg baseline is often competitive, and in some cases even outperforms
deep learning methods. We attribute this to the small and noisy nature of the data, where simpler
models are less prone to overfitting. This highlights the need for caution and careful design when
applying deep learning models in this domain.(3) Diffusion models struggle with training instability
and high data needs; our composite flow matching improves both stability and data efficiency.

Table 2 shows consistent drops when removing either component, confirming that the composite base
improves data efficiency and the detection head addresses imperfect observation.

We further analyze where WILDFLOW works particularly well. For each cell i and month t, we
compute the log-loss difference relative to LogReg. Smaller values indicate regions where WILD-
FLOW provides more accurate and calibrated probabilistic forecasts. In Figure 3, we observe that
WILDFLOW consistently achieves stronger performance on cells with higher levels of adjacent patrol
effort across all test years. Neighboring patrol effort can induce displacement effects and create
intricate spatial dependencies, and the superior performance of our method in these regions supports
the intuition that flow matching is well-suited to modeling complex, high-dimensional spatial patterns.
We also find that WILDFLOW tends to perform better on cells located closer to patrol posts. A
possible explanation is that proximity to patrol posts increases both the frequency and reliability of
detections, which our method is better able to exploit.

6 Conclusion and Path to Deployment

We introduced WILDFLOW, a generative AI framework for poaching prediction that addresses
observation bias and data scarcity. On datasets from two Ugandan parks, it outperforms strong
baselines, highlighting its potential for conservation and climate resilience. As next steps, we will
run pilots in Uganda and Nigeria with wildlife authorities, integrating the tool into SMART software
and refining it through ranger feedback. Our ultimate goal is large-scale, responsible deployment of
generative AI to support biodiversity protection under climate change.
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A Appendix

A.1 Extended Related Works

AI for poaching prediction. Yang et al. [12] introduced the Protection Assistant for Wildlife
Security (PAWS) using a subjective-utility quantal response (SUQR) behavioral model. To explicitly
account for imperfect detection, Nguyen et al. [13] proposed a two-layer Bayesian network with
latent variables. However, Kar et al. [7] later found this approach brittle in practice due to model
complexity; an ensemble of decision trees achieved higher accuracy with lower runtime and was
validated in a one-month field test. To combine the strengths of prior methods, Gholami et al. [14]
proposed a geo-clustering technique that yields a hybrid of multiple Markov random fields with
a bagging ensemble of decision trees, supported by a five-month controlled field test. To further
address nonuniform uncertainty stemming from uneven patrol effort, Gholami et al. [15], Xu et al.
[16] trained ensembles of weak learners—decision trees and Gaussian processes—on data stratified
by patrol intensity, with deployment via the SMART conservation platform [17]. Finally, Xu et al.
[5] used logistic regression to quantify the deterrence effects of ranger patrols on poaching risk.

Despite these practical successes, most approaches still rely on classical models with limited capacity
to capture high-dimensional, nonlinear spatial patterns; few make use of modern deep learning. Most
recently, Kong et al. [19] applied diffusion models to green security problems. Our work differs in
three key ways: (i) Their focus is on robust patrol optimization for general green security, whereas
we focus specifically on poaching risk forecasting for conservation. (ii) They do not account for
imperfect detection, which is a critical challenge in conservation settings, while we explicitly model
the visit-level detection process. (iii) Their features are restricted to historical patrol effort, whereas
we incorporate rich environmental covariates. In this richer feature space, diffusion models struggle
due to their data-hungry nature. To address this, we propose a composite flow model that improves
data efficiency.

Generative AI for wildlife conservation In camera-trap vision, neural generative models have
been applied directly to wildlife datasets: CycleGAN variants translate between sensor domains
(e.g., visible and near-infrared) and augment rare species to improve few-shot classification [20, 21].
Beyond imagery, generative audio models have been developed to synthesize wildlife vocalizations
and strengthen bioacoustic monitoring under data scarcity. Early work explored class-conditional
GANs for animal-sound augmentation [22], followed by diffusion-based pipelines that generate
birdsong spectrograms to improve classifier accuracy [23], and more recently, diffusion models that
synthesize anuran calls [24]. Large language models (LLMs) have also been applied to detect illegal
wildlife trafficking on online marketplaces by generating pseudo-labels for unlabeled listings [25]. In
contrast, our work focuses on generative modeling for poaching prediction in protected areas.

A.2 Derivation of the Marginalized Log-Likelihood

For cell–month (i, t), let ri,t = σ(ψi,t) and yi,t = (yi,t,1, . . . , yi,t,Ji,t) with detection probabilities
{pi,t,j}

Ji,t
j=1. Assume: (i) zi,t ∼ Bernoulli(ri,t); (ii) visits are conditionally independent given zi,t;

(iii) no false positives: P (yi,t,j = 1 | zi,t = 0) = 0.
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We marginalize over zi,t ∈ {0, 1}:

P (yi,t |ψi,t, {pi,t,j}) = (1− ri,t)P (yi,t|z=0)

+ ri,t P (yi,t|z=1). (2)

By (iii),
P (yi,t|z=0) = 1{∀j : yi,t,j = 0},

and by (ii),

P (yi,t|z=1) =

Ji,t∏
j=1

p
yi,t,j
i,t,j (1− pi,t,j)

1−yi,t,j .

Substituting into (2) yields

P (yi,t |ψi,t, {pi,t,j}) = (1− ri,t)1{∀j : yi,t,j = 0}

+ ri,t

Ji,t∏
j=1

p
yi,t,j
i,t,j (1− pi,t,j)

1−yi,t,j .

Define

Si,t = 1{∃j : yi,t,j = 1}, Li,t =

Ji,t∏
j=1

p
yi,t,j
i,t,j (1− pi,t,j)

1−yi,t,j .

Since 1{∀j : yi,t,j = 0} = 1− Si,t, the log-likelihood term is

logP (yi,t|·) = log
(
(1− ri,t)(1− Si,t) + ri,t Li,t

)
,

and the training loss is its negative.

Special cases. If Si,t = 0 (no detections),

logP (yi,t|·) = log
(
(1− ri,t) + ri,t

∏
j

(1− pi,t,j)
)
.

If Si,t = 1 (at least one detection),

logP (yi,t|·) = log ri,t

+
∑
j

(
yi,t,j log pi,t,j

+ (1− yi,t,j) log(1− pi,t,j)
)
.

A.3 Training Algorithm

We provide the full training algorithm in Algorithm 1.

Stage 1: Training encoder and detector. In Stage 1, we jointly train two components: (i) an
encoder that estimates latent occupancy logits, and (ii) a detection head that models visit-level
detection probabilities.

For each cell i at month t, the node feature is defined as

c′i,t = [xi,t, Si,t, a
m
i,t],

where xi,t are geographic covariates, Si,t = 1{∃j : yi,t,j = 1} indicates whether poaching was
observed, and ami,t =

∑
j ai,t,j is the total patrol effort that month. Let C′

t denote the collection of all
node features in month t.

The encoder maps the graph and node features to latent occupancy logits:

ψ̂
(1)

t = fω(G,C
′
t).
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Independently, the detection head computes the probability of detecting a snare on visit j as
pi,t,j = σ

(
gϕ(xi,t, ai,t,j)

)
,

which depends only on visit-level covariates and patrol effort.

Substituting ri,t = {σ(ψ̂i,t)} and {pi,t,j} into Eq. (1) yields the occupancy–detection log-likelihood
Locc(i, t). We then jointly optimize encoder and detector parameters (ω, ϕ) by solving

max
ω,ϕ

∑
i,t

Locc(i, t).

Stage 2: Training latent flow matching. In Stage 2, we train a conditional flow prior to transport a
composite base distribution to the latent targets inferred by the Stage 1 encoder. At this stage, the

encoder and detector parameters (ω, ϕ) are frozen, and the encoder outputs ψ̂
(1)

t serve as the training
targets.

We train a graph–conditional velocity field vθ(·, ·; G,Ct) using the composite baseψ(0)
t = bη(Ct)+ϵ

with ϵ ∼N (0, σ2
0I), and straight-line paths ψ(s)

t = (1 − s)ψ
(0)
t + s ψ̂

(1)

t , s ∈ [0, 1]. Prior work
has shown that when the base distribution is closer to the target distribution, the generalization
performance of flow matching improves [26].

Putting the components together, the conditional flow-matching objective is defined as

min
θ

∑
t

E s∼U [0,1]

ϵ∼N (0,σ2
0I)

∥∥∥vθ(ψ(s)
t , s; G,Ct

)
−
(
ψ̂

(1)

t −ψ(0)
t

)∥∥∥2
2

Inference. For a forecast month t⋆, we construct Ct⋆ from features and past patrol effort only. We
then sample an initial base ψ(0)

t⋆ ∼ p0(· | Ct⋆), and integrate the learned velocity field

dψ
(s)
t⋆

ds
= vθ

(
ψ

(s)
t⋆ , s; G,Ct⋆

)
, s ∈ [0, 1],

to obtain ψ(1)
t⋆ . The resulting occupancy risk is rt⋆ = σ(ψ̃t⋆). For more stable estimates, we can

draw M samples and compute the Monte Carlo mean.

Given planned visit-level efforts {ai,t⋆,j}
Ji,t⋆
j=1 , detection probabilities are obtained from the trained

head:
pi,t⋆,j = σ

(
gϕ(xi,t⋆ , ai,t⋆,j)

)
.

The probability of at least one detection in cell i during month t⋆ is then

p̂any,i,t⋆ = ri,t⋆
(
1−

Ji,t⋆∏
j=1

(1− pi,t⋆,j)
)
.

Note that the encoder is only used during training and is not required at inference time.

A.4 Experimental Details

LogReg: The occupancy model is linear, and the detection component is modeled with a linear
head, consistent with the other baselines. Predictions are made independently for each cell. To
capture spatial spillovers from patrol activity, we follow Xu et al. [5] and include aggregated patrol
effort in adjacent cells as an additional feature in the occupancy model. We jointly train the linear
occupancy model and detection head by minimizing −

∑
i,t Locc(i, t), where B denotes the batch.

Optimization is performed using the BFGS algorithm from SciPy [27].

MLP: We implement a multilayer perceptron (MLP) baseline for occupancy modeling, using a
three-layer fully connected network with ReLU activations and dropout regularization. To ensure
numerical stability, the output logits are clipped to an absolute value of 10 before applying the sigmoid
transformation. Predictions are made independently for each cell. To capture spatial spillovers from
patrol activity, we follow Xu et al. [5] and include aggregated patrol effort in adjacent cells as an
additional feature in the occupancy model. The model is trained by minimizing −

∑
i,t Locc(i, t).

The MLP occupancy network and detection head are optimized jointly using the AdamW optimizer,
with hyperparameters listed in Table 3.
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Algorithm 1: Two-Stage Training for WILDFLOW

Input: Monthly graphs {Gt = (V,E)} with node features Ct and C′
t; visit-level data {(ai,t,j , yi,t,j)};

encoder fω , detection head gϕ, flow velocity vθ; pretrained linear occupancy model bη .
Output: Trained fω, gϕ, vθ .

1 Stage 1:
2 Encoder & Detection Head
3 foreach epoch = 1, . . . , E1 do
4 foreach month t do
5 ψ̂t ← fω(Gt, C

′
t) ▷ logits for latent occupancy

6 foreach cell i ∈ V and visit j = 1, . . . , Ji,t do
7 pi,t,j ← σ

(
gϕ(xi,t, ai,t,j)

)
▷ visit-level detection prob.

8 Locc(t)←
∑

i log p
(
{yi,t,j}j | ψ̂i,t, {pi,t,j}j

)
▷ Eq. (1)

9 Update (ω, ϕ) by maximizing
∑

t Locc(t)

▷ Outputs surrogate targets ψ̂
(1)

t ← fω(Gt,C
′
t).

10 Stage 2:
11 Latent Flow Matching
12 Freeze (ω, ϕ)
13 foreach epoch = 1, . . . , E2 do
14 foreach month t do
15 Sample base ψ(0)

t ∼ N
(
bη(Ct), σ

2
0I

)
16 Draw s ∼ U [0, 1] and form ψ(s)

t = (1− s)ψ(0)
t + s ψ̂

(1)

t

17 Compute target velocity ut = ψ̂
(1)

t −ψ
(0)
t

18 Predict vt = vθ
(
ψ

(s)
t , s; Gt,Ct

)
19 LFM(t)← ∥ vt − ut ∥22
20 Update θ by minimizing

∑
t LFM(t)

21 return (fω, gϕ, vθ)

GP: We model occupancy using a sparse variational Gaussian process (GP), where the latent
function f is mapped to occupancy probability via a sigmoid transformation. Predictions are made
independently for each cell. To capture spatial spillovers from patrol activity, we follow Xu et al.
[5] and include aggregated patrol effort in adjacent cells as an additional feature in the occupancy
model. The GP and linear detection head are trained jointly by maximizing the evidence lower bound
(ELBO):

LGP = −Eq(f)
[
log p

(
y | f

)]
+ KL(q(f) ∥ p(f)) ,

where p(f) is the GP prior and q(f) is a sparse variational posterior defined using inducing points to
approximate the true posterior. The expectation is estimated via Monte Carlo sampling. We use the
GPyTorch implementation [28], and the detailed hyperparameter setup is provided in Table 3.

GNN: We represent each cell as a node in a graph, with edges defined by spatial adjacency. Node
features and graph structure are passed through a GCN encoder [29], which outputs an occupancy
probability for each node via a sigmoid transformation. The encoder and detection head are trained
jointly by minimizing −

∑
i,t Locc(i, t). We optimize using AdamW [30] and apply gradient clipping

with a maximum norm of 5. Hyperparameter details are provided in Table 3.

Transformer: As with the GNN, we represent each cell as a node in a graph, with edges defined
by spatial adjacency. Node features and graph structure are passed through a Transformer-based
graph encoder, which performs multi-head attention over each node’s neighborhood and outputs an
occupancy probability via a sigmoid transformation. The encoder and detection head are trained
jointly by minimizing −

∑
i,t Locc(i, t), using AdamW [30] with gradient clipping at a maximum

norm of 5. Hyperparameter details are provided in Table 3.

Diffusion Model: We adopt the same two-stage training procedure as WILDFLOW. Hyperparameter
settings are listed in Table 3.
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WILDFLOW: The hyperparameter settings for our method are also summarized in Table 3.
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Model HP Value

MLP

Epochs 100
LR {3, 5, 8} × 10−3

Optimizer AdamW
Batch 512
W. Decay 10−4

Logit Bound 10

GP

Epochs 100
LR {3, 5} × 10−3

Optimizer AdamW
Batch 256
MC Samples 8 / 50

GNN

Epochs 120
LR {3, 5} × 10−3

Optimizer AdamW
Batch 256
Hidden Dim 128
Layers 2

Transformer

Epochs 120
LR {3, 5} × 10−3

Optimizer AdamW
Batch 256
Hidden Dim 128
Layers 2
Heads 4

Diffusion (Stage I)

Optimizer AdamW
LR 10−2

Batch 256
Hidden Dim 128
Layers 2

Diffusion (Stage II)

Optimizer AdamW
LR {10−2, 10−3}
Batch 256
Hidden Dim 128
Layers 2

WILDFLOW (Stage I)

Optimizer AdamW
LR 10−2

Batch 256
Hidden Dim 128
Layers 2

WILDFLOW (Stage II)

Optimizer AdamW
LR {10−2, 10−3}
Batch 256
Hidden Dim 128
Layers 2
σ0 0.1

Table 3: Hyperparameter settings for all methods.
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