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Motivation
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Problem: diffusion models are effective for probabilistic weather forecasting, but their slow iterative solvers during 

inference make them impractical for S2S applications, where long-lead times and domain calibration is essential 

Limitations with prior work: 

• GenCast takes 39 NFEs and ArchesWeatherGen takes 25 NFEs per step — multi-step finetuning is way too costly 

• Lower the temporal resolution form 6h to 12 or 24h so there are simply make fewer function evals 

• Do without diffusion and train multiple models (FGN) with sensitive perturbations 

What do we want? The speed of a single deterministic model + probabilisitic formulation + physical consistency



Methodology

Task: model the global evolution of the atmosphere, learning  by estimating the temporal residual 

 with a neural net (helps to regularize training and is more flexible) 

ERA5 Dataset: 6-hourly 1.4° WB2 data with 4 surface, 5 atmospheric (at 13 vertical levels), and 3 forcing variables; 

train: 1979–2018, val: 2019, test: 2020 (compute budget constraints, but working on full-resolution 0.25° ERA5)

p (xi+1 ∣ xi)
xδi − xi : δi ∼ U{6,12,24}
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Novelty: first consistency and finetuned probability flow model 
for global weather and subseasonal-to-seasonal (S2S) forecasting!

Two-Stage Probability Flow Training
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pretraining finetuning



Latitude  and pressure  weighted v-prediction loss 

 

where  is the objective for the baseline diffusion and base consistency models 
 

Diffusion (TrigFlow):  

Consistency (sCM): 
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① Model Pretraining
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With the single step consistency model, we take –  autoregressive steps and  ensembles, 

backpropagating through time on last step loss 

 

Continuous Ranked Probability Score: 

K = 1 8 N = 2
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② Multi-Step Finetuning
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CRPS(F, y) = ∫ ∞
−∞ (F(z) − 1[z ≥ y])2 dz



Swift (1-step consistency sampler) is competitive to the IFS ENS and GenCast (20-step 
2nd-order sampler), though finetuning shows a spread/skill tradeoffs in early lead times

Medium-Range Forecast Skill
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Figure 1: subset of latitude-weighted rmse and spread/skill metrics compared to baselines

Swift is 39  faster!×



Swift reproduce realistic wave modes with coherent physical structure and realistic power spectra

Long-Term Stability
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Figure 2: Hovmöller diagram, qualitative forecast fields, and Q700 power spectra



Swift correctly (a) captures the northern trend for Hurricane Laura at a lead time of 5 days and (b) reproduces the 
expected response to change in forcing conditions on seasonal scales

Case Studies
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Figure 3: (left) Hurricane Laura tracks and (right) seasonal cycle forecasts
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Takeaway: finetuning consistency models with CRPS 

deliver fast, few-step ensemble forecasts with comparable 
skill to diffusion at longer time scales   

Challenges: consistency models are hard to train 

(instability and divergence) and remain expensive to train, 
only solving part of the compute problem 

• Model Distillation: knowledge transfer from larger 

TrigFlow models to a smaller consistency model 

• Improved Performance: Classifier Free Guidance + 

Architecture Improvement (GNN/FNO) + 0.25° Data 

Conclusion

24h forecast error vs compute


