

Swift: An Autoregressive Consistency Model for Efficient Weather Forecasting

Jason Stock¹, Troy Arcomano^{1,2}, Rao Kotamarthi¹

¹ Argonne National Laboratory

² Allen Institute for Al

Motivation

Problem: diffusion models are effective for probabilistic weather forecasting, but their slow iterative solvers during inference make them impractical for S2S applications, where long-lead times and domain calibration is essential

Limitations with prior work:

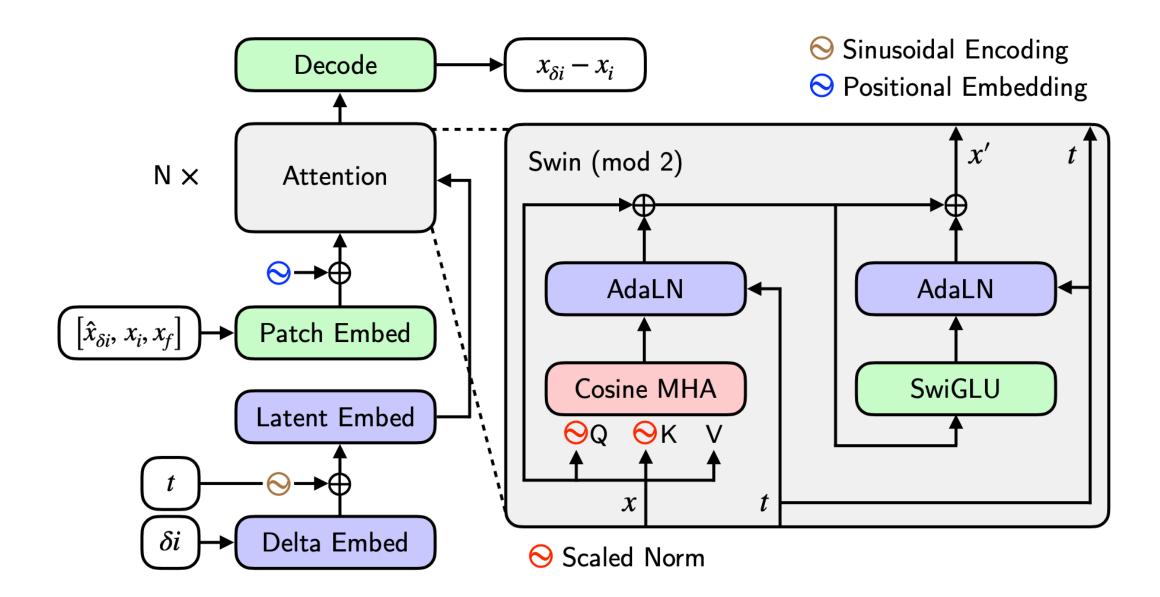
- GenCast takes 39 NFEs and ArchesWeatherGen takes 25 NFEs per step multi-step finetuning is way too costly
- Lower the temporal resolution form 6h to 12 or 24h so there are simply make fewer function evals
- Do without diffusion and train multiple models (FGN) with sensitive perturbations

What do we want? The speed of a single deterministic model + probabilisitic formulation + physical consistency

Methodology

Task: model the global evolution of the atmosphere, learning $p\left(x_{i+1} \mid x_i\right)$ by estimating the temporal residual $x_{\delta i} - x_i : \delta i \sim U\{6,12,24\}$ with a neural net (helps to regularize training and is more flexible)

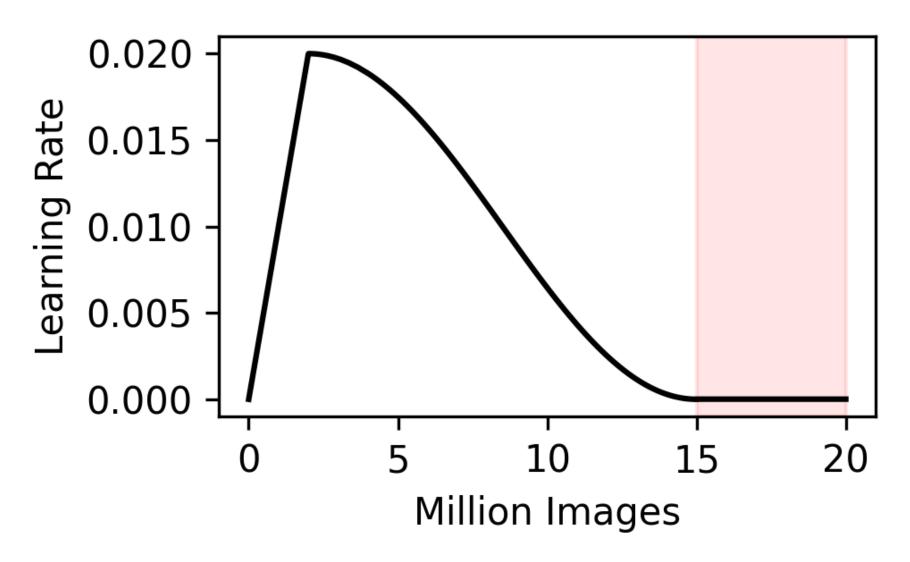
ERA5 Dataset: 6-hourly 1.4° WB2 data with 4 surface, 5 atmospheric (at 13 vertical levels), and 3 forcing variables; train: 1979–2018, val: 2019, test: 2020 (compute budget constraints, but working on full-resolution 0.25° ERA5)

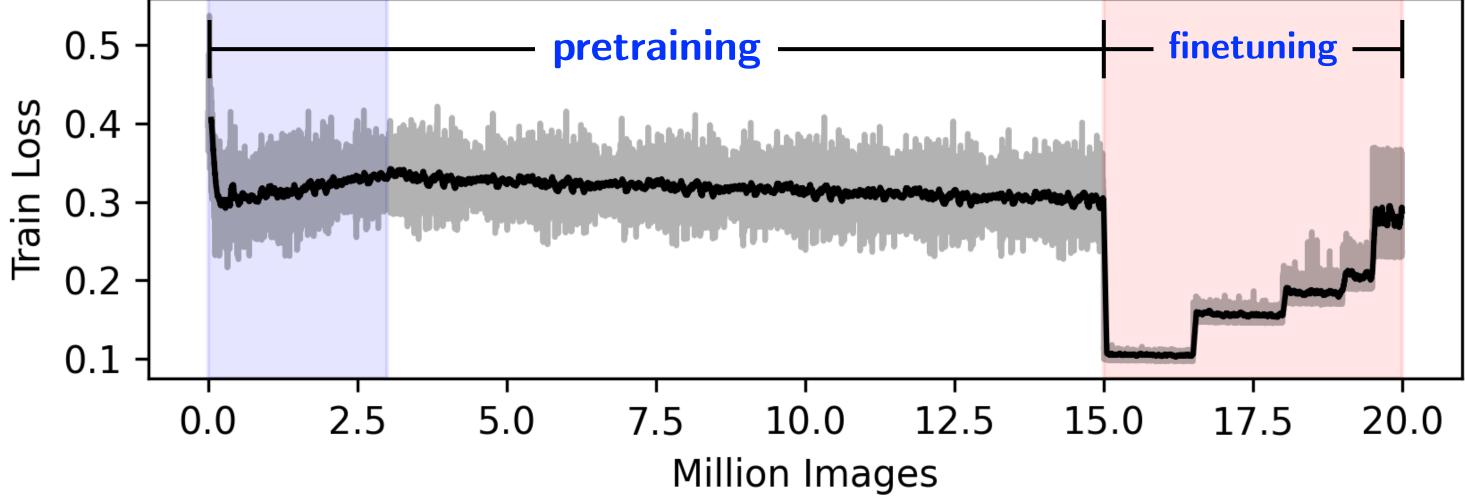


Type	Variable	Description
surface	t2m	2 meter temperature
surface	10u	10 meter u -wind component
surface	10v	10 meter v -wind component
surface	mslp	Mean sea level pressure
atmos.	z	Geopotential
atmos.	t	Temperature
atmos.	u	u-wind component
atmos.	v	v-wind component
atmos.	q	Specific humidity
static	Z	Geopotential at surface
static	lsm	Land-sea mask
clock	n/a	TOA incident solar radiation

Two-Stage Probability Flow Training

Novelty: first consistency and finetuned probability flow model for global weather and subseasonal-to-seasonal (S2S) forecasting!



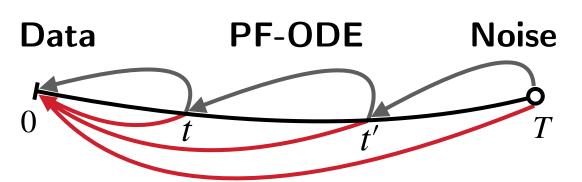


1) Model Pretraining

Latitude $\kappa(s)$ and pressure $\alpha(v)$ weighted v-prediction loss

$$L(\theta) = \frac{1}{|S|} \sum_{s \in S} \sum_{v \in V} \kappa(v) \, \alpha(s) \, \mathcal{C}_{v,s}(\theta)$$

diffusion / consistency



where $\ell(\theta)$ is the objective for the baseline diffusion and base consistency models

Diffusion (TrigFlow):
$$\mathbb{E}_{\mathbf{x}_0,\mathbf{z},t} \left[\left\| \sigma_d \mathbf{F}_{\theta} \left(\frac{\mathbf{x}_t}{\sigma_d}, t \right) - \left(\cos(t) \mathbf{z} - \sin(t) \mathbf{x}_0 \right) \right\|_2^2 \right]$$

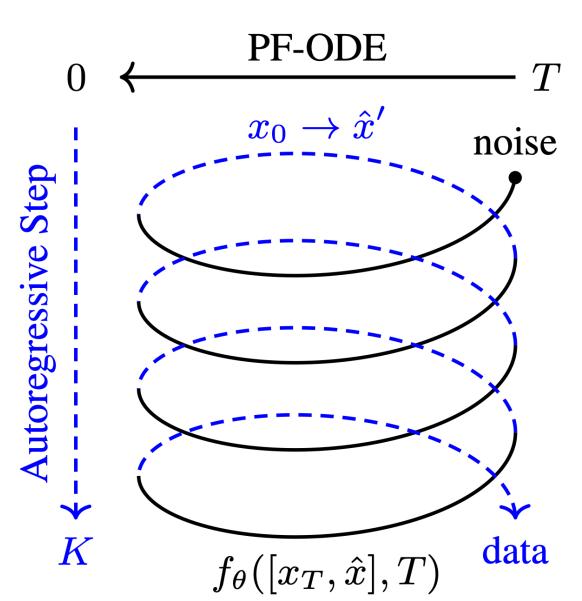
Consistency (sCM):
$$\mathbb{E}_{\mathbf{x}_{t},t} \left[\left\| \mathbf{F}_{\theta} \left(\frac{\mathbf{x}_{t}}{\sigma_{d}}, t \right) - \mathbf{F}_{\theta^{-}} \left(\frac{\mathbf{x}_{t}}{\sigma_{d}}, t \right) - \cos(t) \frac{\mathrm{d}\mathbf{f}_{\theta^{-}}(\mathbf{x}_{t}, t)}{\mathrm{d}t} \right\|_{2}^{2} \right]$$

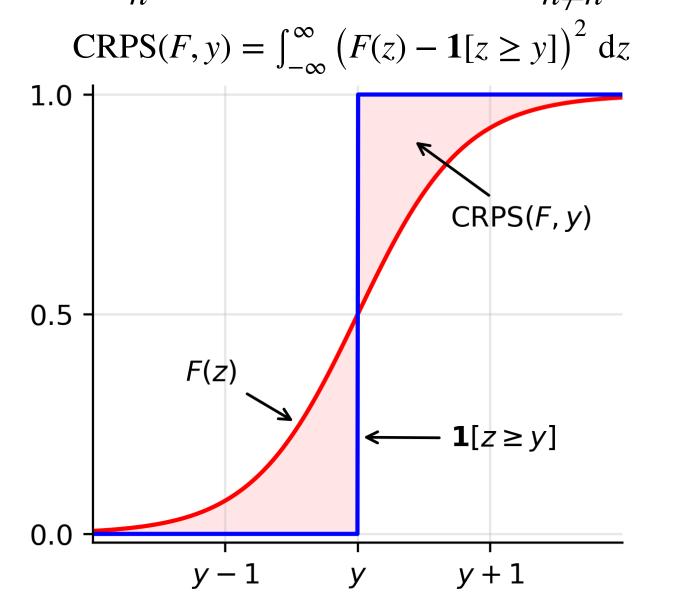
2 Multi-Step Finetuning

With the **single step consistency model**, we take K = 1-8 autoregressive steps and N = 2 ensembles, backpropagating through time on last step loss

$$L_{\text{CRPS}} = \frac{1}{|S|} \sum_{s \in S} \sum_{v \in V} \kappa(v) \, \alpha(s) \, \text{CRPS} \left(\hat{\mathbf{y}}_{v,s}^{1:2}, \mathbf{y}_{v,s} \right)$$

Continuous Ranked Probability Score: $\frac{1}{N} \sum_{n} |\hat{y}^n - y| - \frac{1}{2N(N-1)} \sum_{n \neq n'} |\hat{y}^n - y^{n'}|$





Medium-Range Forecast Skill

Swift (1-step consistency sampler) is competitive to the IFS ENS and GenCast (20-step 2nd-order sampler), though finetuning shows a spread/skill tradeoffs in early lead times

Swift is 39× faster!

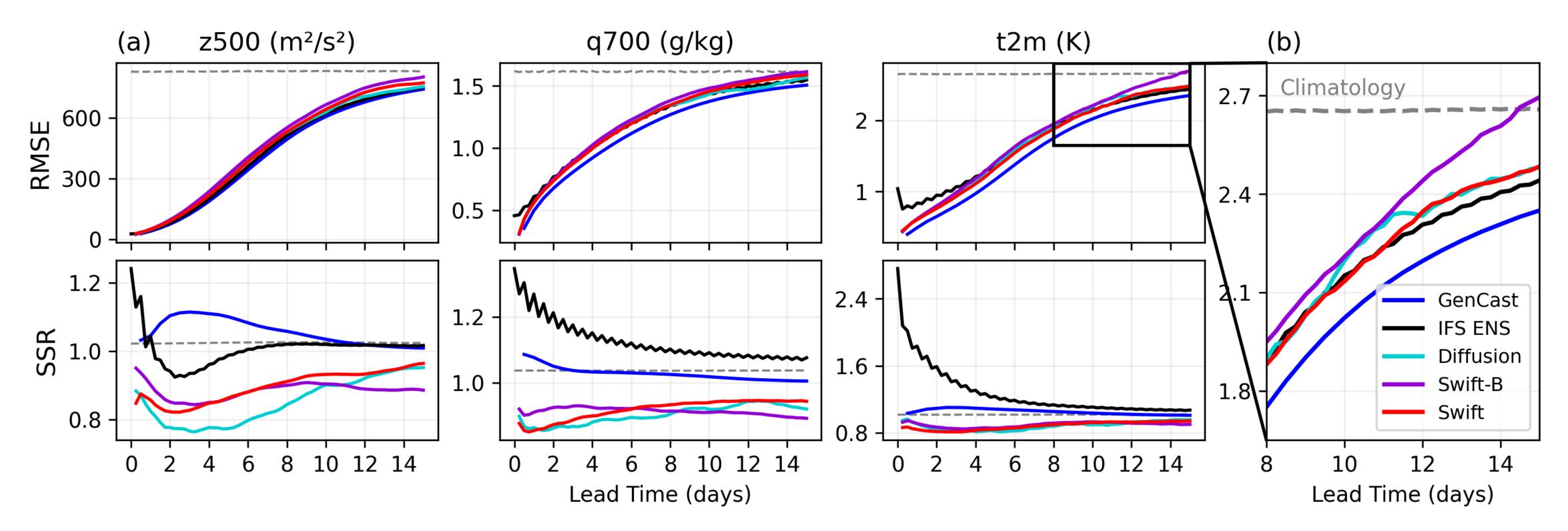


Figure 1: subset of latitude-weighted rmse and spread/skill metrics compared to baselines

Long-Term Stability

Swift reproduce realistic wave modes with coherent physical structure and realistic power spectra

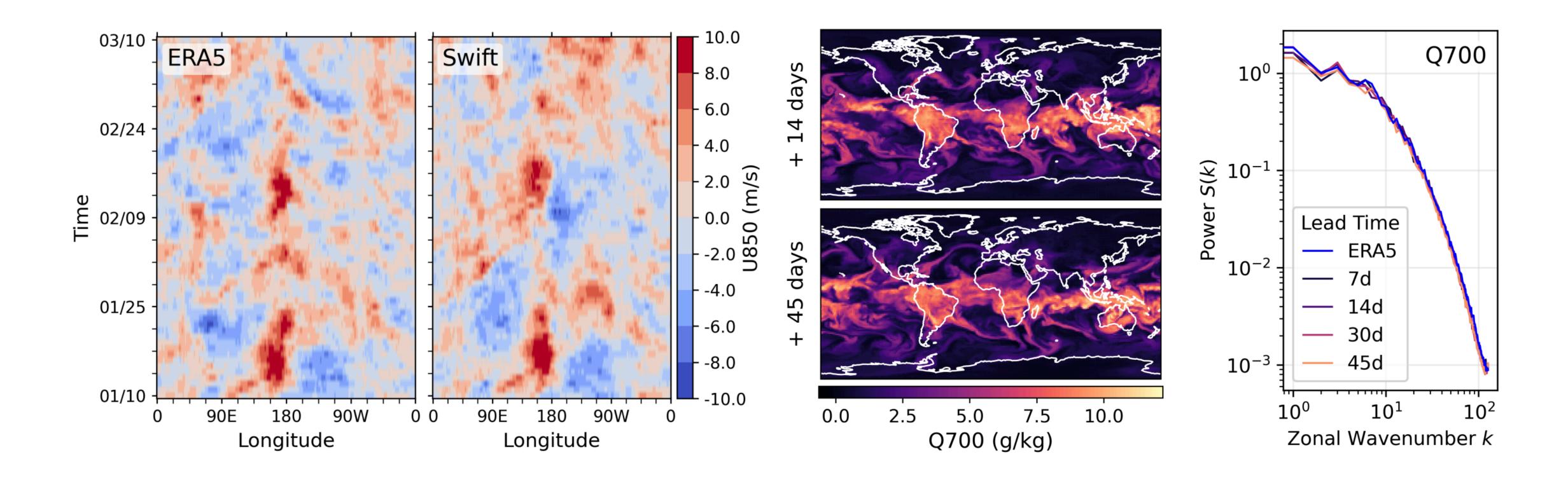


Figure 2: Hovmöller diagram, qualitative forecast fields, and Q700 power spectra

Case Studies

Swift correctly (a) captures the northern trend for Hurricane Laura at a lead time of 5 days and (b) reproduces the expected response to change in forcing conditions on seasonal scales

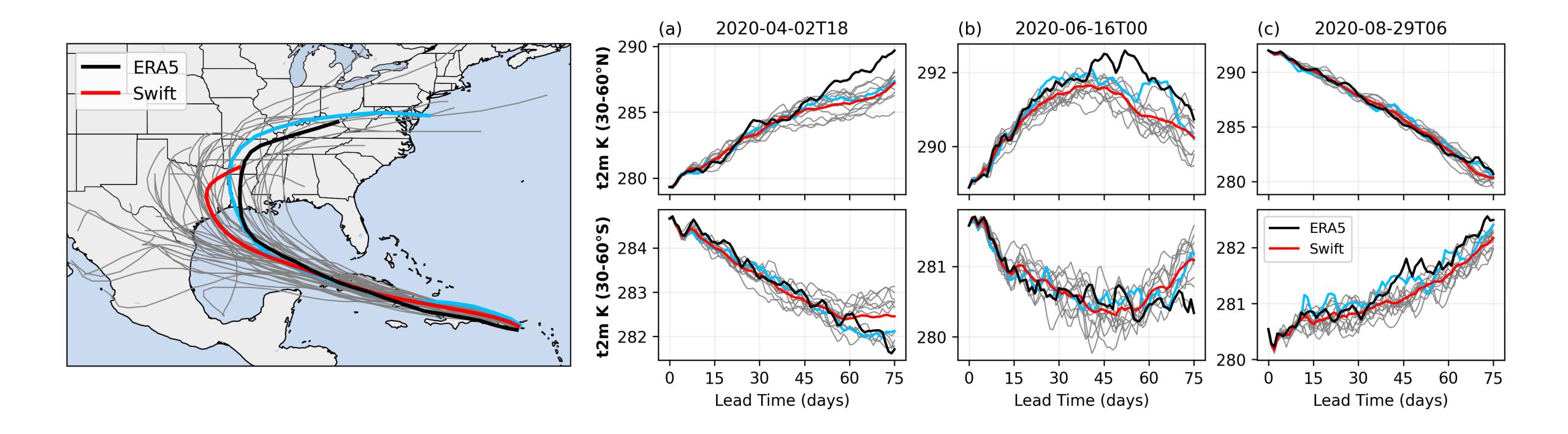
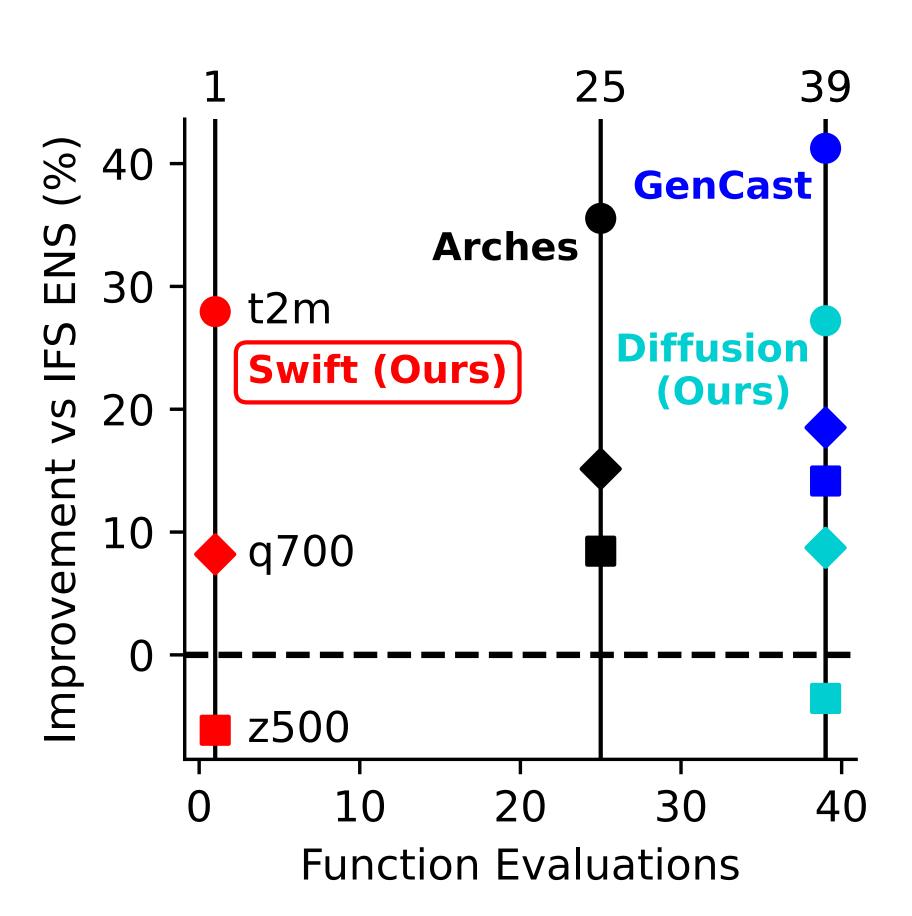


Figure 3: (left) Hurricane Laura tracks and (right) seasonal cycle forecasts

Conclusion

24h forecast error vs compute



Takeaway: finetuning consistency models with CRPS deliver fast, few-step ensemble forecasts with comparable skill to diffusion at longer time scales

Challenges: consistency models are hard to train (instability and divergence) and remain expensive to train, only solving part of the compute problem

- **Model Distillation**: knowledge transfer from larger TrigFlow models to a smaller consistency model
- Improved Performance: Classifier Free Guidance + Architecture Improvement (GNN/FNO) + 0.25° Data

