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Introduction
Diffusion models are effective for probabilistic weather forecasting, but their slow iterative solvers during
1 25 39 inference make them impractical for S2S applications, where long-lead times and domain calibration is essential
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Figure 1: 24h forecast error vs compute Figure 2: global forecast skill: latitude-weighted rmse and spread/skill compared to baselines

Methodology

Task: model the global evolution of the atmosphere, learning p (xl-+1 |xl-) by
estimating the temporal residual x5; — x; : 6i ~ U{6,12,24} with a neural net

ERA5 Dataset: 6-hourly 1.4° WB2 data with 4 surface, 5 atmospheric (at 13
vertical levels), and 3 forcing variables; train: 1979-2018, val: 2019, test: 2020
(compute budget constraints, but working on full-resolution 0.25° ERA5)

Architecture: 225M parameter conditional (initial/forcing + noise level and
data time delta) non-hierarchical swin transformer with 2 X 2 local patch size

Two-Stage Probability Flow Training
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Train Loss

(D Model Pretraining: latitude x(s) and pressure a(v) weighted v-prediction

loss for both the diffusion baseline and base consistency model
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(2 Multi-Step Finetuning: single sampling step with K = 1-8 autoregressive

steps and N = 2 ensembles, backpropagating through time on last step loss
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Novelty: first consistency and finetuned probability flow model for
global weather and subseasonal-to-seasonal (S2S) forecasting!

Experimental Results

Sampling Efficiency (Figure 1): 39x fewer forward passes for our consistency
model (Swift) with comparable errors to diffusion baselines across variables

Forecast Skill (Figure 2): finetuned Swift (1-step sampler) is competitive to
the IFS ENS and GenCast (20-step 2nd-order sampler), spread/skill tradeoffs

Long-Term Stability (Figure 3): consistency models reproduce realistic wave
modes with coherent physical structure and realistic power spectra (not shown)

Case Studies (Figure 4): correctly (a) captures the northern trend for

Hurricane Laura at a lead time of 5 days and (b) reproduces the expected
response to change in forcing conditions on seasonal scales
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Figure 3: long-term stability: Hovmoller diagram and forecast fields

(a) 2020-04-02T18 (b)  2020-06-16T00
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Figure 4: case studies: Hurricane Laura tracks and seasonal cycles

Conclusion

Takeaway: finetuning consistency models with CRPS deliver fast, few-step
ensemble forecasts with comparable skill to diffusion at longer time scales

Challenges: consistency models are hard to train (instability and divergence)
and remain expensive to train, only solving part of the compute problem

- Model Distillation: knowledge transfer from larger TrigFlow models
- Classifier Free Guidance: incurs 2x NFEs but could further improve skill



