
Task: model the global evolution of the atmosphere, learning  by 
estimating the temporal residual  with a neural net 

ERA5 Dataset: 6-hourly 1.4° WB2 data with 4 surface, 5 atmospheric (at 13 
vertical levels), and 3 forcing variables; train: 1979–2018, val: 2019, test: 2020 
(compute budget constraints, but working on full-resolution 0.25° ERA5) 

Architecture: 225M parameter conditional (initial/forcing + noise level and 
data time delta) non-hierarchical swin transformer with  local patch size 

Two-Stage Probability Flow Training 

① Model Pretraining: latitude  and pressure  weighted v-prediction 

loss for both the diffusion baseline and base consistency model 

 

 

Diffusion (TrigFlow):  

Consistency (sCM):  

② Multi-Step Finetuning: single sampling step with –  autoregressive 

steps and  ensembles, backpropagating through time on last step loss 

 

Continuous Ranked Probability Score: 
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Methodology

Introduction

Conclusion
Takeaway: finetuning consistency models with CRPS deliver fast, few-step 
ensemble forecasts with comparable skill to diffusion at longer time scales   

Challenges: consistency models are hard to train (instability and divergence) 
and remain expensive to train, only solving part of the compute problem 

- Model Distillation: knowledge transfer from larger TrigFlow models  
- Classifier Free Guidance: incurs 2  NFEs but could further improve skill×

Experimental Results

Sampling Efficiency (Figure 1): 39  fewer forward passes for our consistency 
model (Swift) with comparable errors to diffusion baselines across variables 

Forecast Skill (Figure 2): finetuned Swift (1-step sampler) is competitive to 
the IFS ENS and GenCast (20-step 2nd-order sampler), spread/skill tradeoffs 

Long-Term Stability (Figure 3): consistency models reproduce realistic wave 
modes with coherent physical structure and realistic power spectra (not shown) 

Case Studies (Figure 4): correctly (a) captures the northern trend for 
Hurricane Laura at a lead time of 5 days and (b) reproduces the expected 
response to change in forcing conditions on seasonal scales

×

CRPS(F, y) = ∫ ∞
−∞ (F(z) − 1[z ≥ y])2 dz
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Figure 2: global forecast skill: latitude-weighted rmse and spread/skill compared to baselines

Figure 3: long-term stability: Hovmöller diagram and forecast fields

Figure 4: case studies: Hurricane Laura tracks and seasonal cycles

Novelty: first consistency and finetuned probability flow model for 
global weather and subseasonal-to-seasonal (S2S) forecasting!

Diffusion models are effective for probabilistic weather forecasting, but their slow iterative solvers during 
inference make them impractical for S2S applications, where long-lead times and domain calibration is essential

Figure 1: 24h forecast error vs compute


