
Scalable Geospatial Data Generation Using AlphaEarth Foundations

• High-quality labeled geospatial datasets are essential for extracting 
insights and understanding our planet, however these datasets are often 
limited to specific geographic regions and are expensive to generate

• We propose and evaluate a method that leverages Google DeepMind’s 
new AlphaEarth Foundations (AEF) to extend existing labeled datasets 
beyond their original geographic boundaries.

• Using this method, we extend vegetation datasets crucial for wildfire 
disaster management from the USA into Canada with up to 81% accuracy.

• This work demonstrates that this task can be accomplished using even 
shallow learning models, such as random forests or logistic regression, 
despite discussed limitations.

Methods

Background
AlphaEarth Foundations (AEF) is a general-purpose, geospatial foundation 
model-as-data publicly available on Google Earth Engine.
How AEF Works: The model transforms Earth observation data (e.g. Landsat 
and Sentinel satellites) into a structured, dense latent representation 
(embedding) (Fig. 1). This output is provided as a dataset of 64-dimensional 
vectors at a 10-meter resolution (over land), and is updated annually.
Existing Vegetation Type (EVT) is an ecological dataset provided by 
LANDFIRE (multi government agency program) available in the USA only and 
used in wildfire management efforts. 

Key Takeaways 
• We present a flexible and scalable pipeline that leverages AEF embeddings to 

extend valuable, but limited, geospatial datasets to new regions
• Using the pipeline, we extend vegetation maps from the USA into Canada
• Performance is conditioned by class granularity and distance to labeled data
• For this task, conventional models perform on par with U-Net segmentation 

model

Figure 1. (A) Representation of AEF for the year 2023, note apparent climatic gradients at large scales. (B) AEF produces 
highly resolved features at 10m2, shown here plotting arbitrary axes in Oaxaca, Mexico. (C) A stack of 64 rasterized AEF 
bands forms an embedding field, and each individual vector maps to a point on the globe. Figure from Brown et al1.
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Models Evaluated: We trained and compared four different classification models:
• Logistic Regression
• Random Forest
• Gradient Boosted Trees
• A U-Net Segmentation Model

Classification Task: We tested this extension at two levels of label granularity:
•  EVTPhys: 13 broad vegetation classes.
•  EVTGp: 80 specific vegetation classes (pre-filtered for our region of interest).

Data & Validation:
•  Models were trained on AEF data from Alaska and the northern continental US.
•  Models were tested against a "ground truth" EVT test set available in a 90km band 
along the Southern and Western Canadian border (Fig. 2).

Figure 3: Inference in Canada generated by the segmentation model (A) for EVTPhys and (B) for EVTGP

Table 2: Accuracy (ACC), Jaccard (J), and F1 across data splits for EVTGP (80 classes).
Training Validation Test

ACC J F1 ACC J F1 ACC J F1
Logistic Regression 0.60 0.28 0.40 0.60 0.27 0.39 0.42 0.11 0.17
Random Forest 0.96 0.94 0.96 0.71 0.39 0.53 0.48 0.16 0.23
Gradient Boosted Trees 0.63 0.29 0.43 0.62 0.28 0.41 0.44 0.12 0.17
Segmentation Model 0.65 0.28 0.40 0.66 0.29 0.41 0.48 0.15 0.21

Table 3: Model performances for EVTPHYS (13 classes) across 3 distinct test regions. Canada South

and Canada West combined comprise the test set in Table 1 (see Data Splits in Section 2.1).
Canada South Canada West Southern CONUS

ACC J F1 ACC J F1 ACC J F1
Logistic Regression 0.67 0.31 0.41 0.82 0.35 0.42 0.59 0.32 0.44
Random Forest 0.69 0.34 0.45 0.83 0.42 0.52 0.68 0.35 0.46
Gradient Boosted Trees 0.69 0.34 0.45 0.83 0.32 0.39 0.64 0.32 0.44
Segmentation Model 0.69 0.34 0.45 0.83 0.37 0.45 0.66 0.36 0.48

Table 4: Model performances for EVTGP (80 classes) across 3 distinct test regions. Canada South

and Canada West combined comprise the test set in Table 2 (see Data Splits in Section 2.1).
Canada South Canada West Southern CONUS

ACC J F1 ACC J F1 ACC J F1
Logistic Regression 0.33 0.07 0.11 0.64 0.21 0.29 0.38 0.10 0.16
Random Forest 0.40 0.11 0.16 0.68 0.27 0.37 0.48 0.14 0.21
Gradient Boosted Trees 0.36 0.07 0.10 0.63 0.08 0.11 0.30 0.06 0.11
Segmentation Model 0.40 0.10 0.15 0.68 0.23 0.31 0.46 0.10 0.16

Further test set investigation As metrics for all models are significantly lower on the test set, we
investigate it in increased detail and add an additional independent set. First, we separate the original
test set (Section 2.1) into two independent ones: the southern Canada 90km band and the western
Canada 90km band. We also create a test set consisting of CONUS south of the 41.6 degrees latitude
line as this was not included in training. Results for EVTPHYS and EVTGP are presented in Tables 3
and 4. Model performance varies drastically across these three regions. On EVTPHYS, all models
achieve reasonably similar metric values when measured in Canada South and Canada West. A clear
accuracy performance difference exists between Canada South and Canada West, with Canada West
exhibiting 0.14 higher accuracy on average across all four models. Generally, Jaccard and F1 scores
are also better for Canada West, but exceptions exist such as for gradient boosted trees. Overall,
Canada West metrics are much closer to those for the validation set (we discuss possible reasons for
this in Section 4: Inference Evaluation and Figure 3). Larger performance differences are observed in
Southern CONUS, with random forest and segmentation achieving highest metrics (0.68 accuracy,
0.36 Jaccard, 0.48 F1). This performance difference is amplified for EVTGP, where random forest
and segmentation clearly are best across all regions. Random forest achieves highest metric measures
across nearly all test regions and metrics for both EVTPHYS and EVTGP.

4 Discussion

EVTPHYS vs EVTGP metrics All models trained to predict EVTGP (80 classes) achieve sig-
nificantly lower metric-evaluated performances as compared to models trained for EVTPHYS (13
classes). This is expected as the number of classes and similarity between classes grows. Importantly,
these metrics do not consider relative similarity between classes. Notably, even EVTPHYS contains
similar classes, e.g., conifer, hardwood, and hardwood-conifer are 3 distinct classes. As can be seen
in Figure 7b, the conifer-hardwood class is often misclassified as either conifer or hardwood. Such
misclassifications are often much more tolerable in practice than the metrics would suggest.
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Random forest achieves 7% accuracy for this class. Prediction accuracy often drops for less-prevalent
classes with similar larger classes.

(a) Per-class precision (b) Confusion matrix

Figure 7: Per-class performance by segmentation model for EVTPHYS

Performance decreases as a function of distance from the training region In Table 5 we
presented metric results for gradient boosted trees and segmentation model for EVTPHYS and
EVTGP, respectively. All metrics decrease as the geographic distance from the training set (CONUS
north of 41.6 degrees of latitude) increases.

Table 5: Test results (Accuracy, Jaccard and F1 scores) for different models across distinct latitude
bands within the CONUS region.

Lat. 41.6 to 38.6 Lat. 38.6 to 35.6 Lat. 35.6 to 33.6

ACC J F1 ACC J F1 ACC J F1

Gradient Boosted Trees
EVTPHYS (13 classes) 0.76 0.42 0.53 0.69 0.34 0.45 0.55 0.26 0.37

Segmentation Model
EVTGP (80 classes) 0.58 0.13 0.19 0.48 0.09 0.14 0.34 0.06 0.09

Southern CONUS test area We compare random forest model inference to the ground truth in
the southern CONUS test area. Visual agreement seems relatively well achieved, with some notable
discrepancies in Texas and New Mexico.
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Figure 8: Southern CONUS test area (below latitude 41.6). EVTGP ground truth (a) versus inference
using random forest (b)

Comparing model inferences We compare model inferences for all models for EVTGP and
EVTPHYS. Overall, good consistency is observed. Inference from logistic regression looks quite
different for EVTGP.
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Overview

Figure 2. Schematic of model training and inference. The 64 bands of AEF data (input) and EVT data (target) from 
continental USA north of the red dotted line and Alaska are used to train the model. Running inference on AEF data in 
Canada provides expected EVT in the previously unlabeled region. 

AlphaEarth Foundations: An embedding field model for accurate and e!cient global mapping from sparse label data

Figure 1 | Embedding fields paradigm. (A) Error ratios across evaluations from the next-best
model/dataset to AlphaEarth Foundations (AEF). Classification errors (bars marked with *) are
measured in Balanced Error Rate kappa (BER𝐿), and regression errors are measured in MAE→1 (bars
marked with †). The pair of numbers on each bar indicate balanced accuracy (BA) for classification
tasks and MAE for regression tasks, with AEF on top and the next-best model/dataset below. Best-case
performance was selected independently for both the next-best model/dataset and for AEF by selecting
the most performant method of transfer (kNN k=1, kNN k=3, linear) for each evaluation. For each
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Figure 2: Inference in Canada generated by the segmentation model.

Table 1: Accuracy (ACC), Jaccard (J), and F1 across data splits for EVTPHYS (13 classes).
Training Validation Test

ACC J F1 ACC J F1 ACC J F1
Logistic Regression 0.77 0.48 0.60 0.77 0.48 0.59 0.71 0.39 0.51
Random Forest 0.97 0.95 0.97 0.81 0.55 0.67 0.73 0.43 0.55
Gradient Boosted Trees 0.79 0.52 0.65 0.79 0.52 0.64 0.73 0.42 0.54
Segmentation Model 0.79 0.50 0.63 0.79 0.51 0.63 0.73 0.42 0.54

validation (0.81 accuracy, 0.55 Jaccard, 0.67 F1) and extremely high training values which suggest
overfitting (0.97 accuracy, 0.95 Jaccard, 0.97 F1). Significant metric deterioration is observed for all
models on the test split. All four models achieved very similar test metrics with random forest besting
in all three: 0.73 accuracy, 0.43 Jaccard index, and 0.55 F1 score. Full results are shown in Table 1.

EVTGP In the case of EVTGP, gradient boosted trees and the segmentation model outperformed
logistic regression substantially. Gradient boosted trees and segmentation achieve similar metrics
for training, but the segmentation model much better generalized to validation and test sets. The
segmentation model achieved 0.65 accuracy, 0.28 Jaccard, and 0.40 F1 scores for the training split
and similar values for validation. On the test set performance dropped for all models, even more
significantly than in EVTPHYS; the segmentation model had 0.48 accuracy, 0.15 Jaccard, and 0.21
F1. The random forest model again experienced the overfitting phenomenon in training with 0.96
accuracy, 0.94 Jaccard, and 0.96 F1. It outperformed all other models significantly in validation
with 0.71 accuracy, 0.39 Jaccard, and 0.53 F1, but performed similarly to segmentation on the test
set. Jaccard index and F1 scores are not biased by majority class which, with many classes, likely
explains their low values. Full results are shown in Table 2.
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Figure 4: Ground truth EVTPHYS (a–c) compared to gradient boosted trees model inference (d–f) in Canada West (g) and South 
(h) test regions. Figures (c, f) additionally show land in CONUS across the border which is indicated by the magenta arrows. There, 
EVT values produced by LANDFIRE seem to exhibit an artificial discontinuity.

Table 2: Model performances for EVTPHYS (13 classes) across 3 distinct test regions. Canada South and Canada West combined 
comprise the test set in Table 1

Table 3: Test results (Accuracy, Jaccard and F1 scores) for different models across distinct latitude bands within the CONUS 
region.

Table 1: Accuracy (ACC), Jaccard (J), and F1 across data splits for EVTPHYS.

Performance is comparable across models, with even simple models exhibiting 
good metrics in test regions.  
Additional testing: Performance varies widely across training regions (Table 2) 
which may partially be due to discrepancies in LANDFIRE test band data (Fig. 4c).
Limitations: 
• As granularity gets finer, performance decreases (Table 3). Notably, AEF 
targets don’t surpass ~40 classes1 but EVTGP contains 80 classes.
• EVT is the output of a decision tree model2 which may introduce structural bias.
• Distance (physical and climate) to labeled region conditions performance 
(table 3)


