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Abstract

High-quality labeled geospatial datasets are essential for extracting insights and
understanding our planet. Unfortunately, these datasets often do not span the
entire globe and are limited to certain geographic regions where data was collected.
Google DeepMind’s recently released AlphaEarth Foundations (AEF) provides an
information-dense global geospatial representation designed to serve as a useful
input across a wide gamut of tasks. In this article we propose and evaluate a
methodology which leverages AEF to extend geospatial labeled datasets beyond
their initial geographic regions. We show that even basic models like random
forests or logistic regression can be used to accomplish this task. We investigate
a case study of extending LANDFIRE’s Existing Vegetation Type (EVT) dataset
beyond the USA into Canada at two levels of granularity: EVTPHYS (13 classes)
and EVTGP (80 classes). Qualitatively, for EVTPHYS, model predictions align
with ground truth. Trained models achieve 81% and 73% classification accuracy
on EVTPHYS validation sets in the USA and Canada, despite discussed limitations.

1 Introduction

High-quality, global environmental datasets are critical for applications ranging from natural resource
management to climate analysis, yet their creation is often hampered by prohibitive costs and
inconsistent data sources. While valuable datasets for variables like vegetation type exist, they are
often confined to specific regions, such as a single country. This geographic scarcity creates major
gaps in our ability to monitor earth system changes and build globally applicable models.

Representation learning, a technique popularized in natural language processing [20, 22, 6], offers a
path to overcoming these limitations. Its adoption in geospatial applications [18] has led to a rich
ecosystem of models designed to encode spatial information [28, 13, 27, 19, 1, 12, 15]. Building on
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this trend, Google DeepMind’s AlphaEarth Foundations (AEF) provides a breakthrough: globally
consistent, high-resolution embeddings derived from a fusion of satellite data including Landsat and
Sentinel [3]. The resulting "Satellite Embedding" dataset [8] encodes a rich variety of geophysical
properties, making it an ideal input feature for diverse downstream tasks.

However, raw embeddings seldom provide easily extractable insights. Insight extraction usually in-
volves visualizations or transformations to simpler easier-to-understand representations. In geospatial
settings, this is often done by creating data labels of important features, e.g., a road or a crop type.
Unfortunately, for many applications, labeled data only exists for certain regions. This greatly limits
access to model and data interpretability across large swaths of the world.

Contribution This paper’s core contribution is a validated pipeline for leveraging AEF embeddings
to generate synthetic environmental variables, effectively extending datasets from data-rich to data-
poor regions. We demonstrate how to train a model to map AEF embeddings to known ground-truth
labels in one area, and then apply this model to infer those same labels elsewhere. This task builds
on a long history of remote sensing classification methods, from early artificial neural networks and
decision trees [11, 5, 7] to modern deep learning architectures [25, 29, 24]. We showcase the efficacy
of this approach with a case study extending a vegetation type dataset from the USA into Canada,
demonstrating AEF can serve as a powerful basis for global data interpolation and synthesis.

2 Data and models

EVT LANDFIRE [23, 16] provides an ecological dataset called Existing Vegetation Type (EVT)
which has historically been used for wildfire management efforts [4]. The EVT dataset consists
of labels at various levels of classification granularity in the USA. LANDFIRE provides mappings
across these different granularity levels, e.g., "Western Hemlock-Yellow-cedar Forest" at medium-
level granularity (EVTGP: collapsed vegetation type) maps into "Conifer" at a lower granularity
(EVTPHYS: physiognomy). This paper describes the training results for both EVTPHYS and EVTGP.

Data selection We train on data from Alaska and northern continental US (CONUS) above the
41.6 degrees latitude line as we believe it provides an effective balance between data quantity and
regions that exhibit most similar ecological or environmental characteristics to the target Canadian
regions. We use LANDFIRE’s 2020 release for EVT in our study [17].

Model
training 

Existing vegetation Type (EVT) labels

64 AEF bands

Inferred EVT

Model 
inference

 

 

 

 

  

Figure 1: Schematic of model training and inference. The 64 bands of AEF data (input) and EVT
data (target) from continental USA above the red dotted line and Alaska are used to train the model.
Running inference on AEF data in Canada provides expected EVT in the previously unlabeled region.

Data preprocessing LANDFIRE’s original EVTGP classifications consist of 194 unique classes,
but we filter out classes comprising less than 0.1% of the dataset to address class imbalance. This
results in 80 classes spanning the selected continental US and Alaska regions. We mask out pixels
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not belonging to one of these 80 classes. This target tests AEF’s ability to generalize to larger
classification problems, as it was optimized on targets with 40 classes at most. For EVTPHYS we
group all development related classes which yields 13 classes from an original 17. We download the
AEF embeddings from Google Earth Engine [9] and train on AEF and EVT at 500m resolution.

Data splits We geographically tile our northern CONUS and Alaska data into tiles of size 64x64
pixels. We allocate 90% of these tiles for training and 10% for validation. The EVT dataset provides
data for a Southern 90km band of Canada and a Western 90km wide band along the Alaska border
in recent releases. We reserve this data for our final test set as it directly coincides with our desired
target and allows us to evaluate the generalizability of our approach to an unseen region.

Models Our proposed methodology extends existing datasets by training machine learning models
to predict labels (e.g., EVT) from AEF inputs. We use a flexible pipeline that allows for rapid
experimentation by easily swapping model architectures. We evaluate four models for this case study:
a logistic regression model which for a given AEF pixel determines a linear weighting of the 64 AEF
band values to produce an EVT classification [10, 21]; a RandomForestClassifier from scikit-learn
[2, 21]; an LGBMClassifier from the LightGBM library [14]; and a segmentation model with a
U-Net architecture using EffecientNet-B4 [26] pre-trained on advprop for the encoder.

3 Results

Figure 2 shows the segmentation model’s inference map of EVTPHYS in Canada which demonstrates
good vegetation type continuity. EVTPHYS maps are qualitatively similar across all models, while the
EVTGP maps show some differences in northern Canada (more details in Appendix Figures 8 and 9).

Figure 2: EVTPHYS(13 classes) Inference in Canada generated using the the segmentation model.

Metrics We used Accuracy, macro-averaged Jaccard Index, and F1 score to compare the perfor-
mance of all models for both EVTPHYS and EVTGP (Tables 1 and 3). On the original training and
validation sets, all models performed similarly, though the random forest model showed signs of
overfitting. A significant performance drop was observed for all models on the test set.

Table 1: Accuracy (ACC), Jaccard (J), and F1 across data splits for EVTPHYS (13 classes).
Training Validation Test

ACC J F1 ACC J F1 ACC J F1
Logistic Regression 0.77 0.48 0.60 0.77 0.48 0.59 0.71 0.39 0.51
Random Forest 0.97 0.95 0.97 0.81 0.55 0.67 0.73 0.43 0.55
Gradient Boosted Trees 0.79 0.52 0.65 0.79 0.52 0.64 0.73 0.42 0.54
Segmentation Model 0.79 0.50 0.63 0.79 0.51 0.63 0.73 0.42 0.54
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Table 2: Model performances for EVTPHYS (13 classes) across 3 distinct test regions. Canada South
and Canada West combined comprise the test set in Table 1 (see Data Splits in Section 2).

Canada South Canada West Southern CONUS

ACC J F1 ACC J F1 ACC J F1
Logistic Regression 0.67 0.31 0.41 0.82 0.35 0.42 0.59 0.32 0.44
Random Forest 0.69 0.34 0.45 0.83 0.42 0.52 0.68 0.35 0.46
Gradient Boosted Trees 0.69 0.34 0.45 0.83 0.32 0.39 0.64 0.32 0.44
Segmentation Model 0.69 0.34 0.45 0.83 0.37 0.45 0.66 0.36 0.48

a)

d)

b)

e)

g) h)
f)

c)

conus

canada

conus

canada

Figure 3: Ground truth EVTPHYS (a–c) compared to gradient boosted trees model inference (d–f) in
Canada West (g) and South (h) test regions. Figures (c, f) additionally show land in CONUS across
the border which is indicated by the magenta arrows. There, EVT values produced by LANDFIRE
seem to exhibit an artificial discontinuity.

Test set investigation We investigate our EVTPHYS and EVTGP test sets in different regions
(Southern and Western Canada) and use Southern CONUS as an additional test region (Tables 2
and 4). We found that performance varied drastically across these regions. All models performed
best in Canada West, with metric values similar to those in the validation set. In Southern CONUS,
a large performance difference between models was observed, with the random forest and segmen-
tation models performing best for both EVTPHYS and EVTGP. Overall, the random forest model
consistently achieved the highest metrics across most test regions and classification granularities.

Inference evaluation All EVTPHYS models successfully capture the main vegetation patterns
(see Figure 3 as an example), though performance declines both qualitatively and quantitatively
on the higher granularity EVTGP dataset. This is likely the result of increased class quantity and
similarity, highlighting the tradeoff between granularity and accuracy. Notably, even EVTPHYS
contains similar classes, e.g., conifer, hardwood, and hardwood-conifer are 3 distinct classes which
are more often misclassified (see Appendix Figure 6b). Such misclassifications are sometimes more
tolerable in practice than the metrics would suggest although tolerance may vary widely depending on
the downstream tasks. The strong performance of non-spatial models like logistic regression, gradient
boosted trees, and random forest is likely due to AEF encoding surrounding spatial information into
single pixel values. There is a notable performance drop across models in regions with ecology that
substantially differs from most of the training region (details in Appendix Table 5).

Limitations While we treat EVT as ground-truth in our experimentation, it is inherently noisy as
the output of imperfect models trained on labeled field and satellite data. Misclassifications certainly
exist which affect the true metric evaluation of trained models. The better performance of models
in Canada West over Canada South could possibly be explained by a seemingly artificial vegetation
discontinuity in the ground truth data near the CONUS/Canada border, which is not present in the
model predictions (Figure 3). This suggests some bias and potential inaccuracies in the measured
performance. Moreover, we hypothesis that random forest’s superior performance, even over the
segmentation model, could be due to a structural bias in the ground truth labels as the EVT dataset is
the product of decision tree models.
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4 Conclusion

Given the global availability of the AEF model, the framework presented in this paper can be applied
to other datasets or regions, opening up new opportunities for creating and improving environmental
labels. For example, this pipeline could be used to generate improved EVT labels by leveraging AEF
and LANDFIRE’s raw labels from its Public Reference Database [23]. However, a key limitation
is that AEF is only available from 2017 onwards. This work demonstrates a powerful approach to
expand geospatial data crucial to climate analysis efforts from data-rich to data-scarce regions.
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C Appendix

AlphaEarth Foundations (AEF) In order to train the AEF model, the Google DeepMind team
leveraged diverse datasets to serve as training inputs and targets. The training inputs consist of Sentinel
and Landsat images. The targets consist of various data types including topography (Copernicus
DEM), land cover (NLCD), and climate (ERA5-Land). The AEF model uses a self-supervised
autoencoder network to learn a representation that enables the reconstruction of individual target
datasets from only the input data. It utilizes a novel Space Time Precision (STP) Encoder specifically
designed to process long-range relationships across time and space. Learning the final embeddings
was accomplished with three neural networks 1) a teacher network that processes complete, unaltered
input imagery, 2) a student network that has the same architecture as the teacher network and attempts
to produce the same embedding as the teacher network albeit from perturbed or incomplete input
data, and 3) a text alignment network that takes text descriptions from wikipedia and produces an
embedding. The combination of four loss functions – reconstruction loss, consistency loss, text
contrastive loss, and batch uniformity loss across these three networks – produces the final embedding.
These learned representations are publicly available as a dataset of 64-dimensional vectors for each
year, called "Satellite Embedding" dataset [8]. This dataset is a global, annual dataset with a spatial
resolution of 10 meters which is currently available from 2017 to 2024.

Hardware The models in this paper are trained on a virtual machine with 160 Intel Broadwell
vCPUs and 3844 GB of memory. For the segmentation model, we use a single A100 GPU.

Semantic segmentation model Figure 4 presents the U-Net architecture used in the semantic
segmentation model. It consists of EfficientNet-B4 and a default U-Net decoder. EfficientNet-B4
is a convolutional neural network architecture built from MBConv blocks. It learns by training
the encoder and decoder in tandem on an AEF image input and corresponding EVT image target.
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The encoder processes the AEF’s representations, extracting and compressing the most relevant
signals for the target geospatial feature layer. The decoder reconstructs the label image from this
compressed representation. By continuously comparing the model’s predicted output against available
ground-truth label images during training, the model learns to accurately encode and decode the
environmental signals. We train without tile overlap to prevent data leakage to validation sets. During

Figure 4: Model architecture. An encoder-decoder semantic segmentation network based on U-Net
which uses EfficientNet-B4 as the encoder, and default U-Net decoder.

inference to unlabeled regions we set a 50% overlap on inference tiles to limit border artifacts.
Final inference maps are generated by taking output probabilities taken from a final softmax layer
and selecting the highest probability class after averaged smoothing across overlaps. We perform
training data augmentation consisting of horizontal and vertical flips, random 90 degree rotations, and
transposes each with 50% probability. During training we use Adam as our optimizer, with a learning
rate scheduler which reduces on plateau. We train our segmentation model using cross-entropy loss.
Training is limited to a maximum of 350 epochs with early stoppage (15 epochs) enabled.

Class distributions We present the class distributions for EVTPHYS (13 classes) and EVTGP (80
classes) in log scale in Figure 5. We provide names for the EVTPHYS classes. EVTGP class names
are omitted due to quantity.

Performance per class It is generally expected that model performance will not be the same
across all classes. Figure 6 showcases the segmentation model performance across EVTPHYS
classes. Performance does not directly correspond with class quantity in the training set. Perhaps
unsurprisingly, open water and snow-ice achieve highest precision values. Minority classes with
similar more-common classes (e.g., exotic tree shrub, conifer-hardwood, exotic herbaceous) achieve
lowest performance scores. Further grouping/clustering would likely significantly improve overall
performance and better balance per-class metrics.

Results for EVTGP Results for EVTGP are presented in Table 3. A clear drop in performance can
be observed for logistic regression. The segmentation model much better generalized to validation
and test sets than gradient boosted trees. The random forest model experienced significant overfitting
in training but outperformed all other models in validation. On the test set, performance dropped
for all models, even more significantly than in EVTPHYS; which can also be partially attributed to
the observed EVT discontinuity for Canada South. For EVTGP, the segmentation model performed
similarly to random forest.

Performance as a function of distance from the training region In Table 5 we presented metric
results for gradient boosted trees and segmentation model for EVTPHYS and EVTGP, respectively.
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Figure 6: Per-class performance by segmentation model for EVTPHYS

Table 3: Accuracy (ACC), Jaccard (J), and F1 across data splits for EVTGP (80 classes).
Training Validation Test

ACC J F1 ACC J F1 ACC J F1
Logistic Regression 0.60 0.28 0.40 0.60 0.27 0.39 0.42 0.11 0.17
Random Forest 0.96 0.94 0.96 0.71 0.39 0.53 0.48 0.16 0.23
Gradient Boosted Trees 0.63 0.29 0.43 0.62 0.28 0.41 0.44 0.12 0.17
Segmentation Model 0.65 0.28 0.40 0.66 0.29 0.41 0.48 0.15 0.21

All metrics decrease as the geographic distance from the training set (CONUS north of 41.6 degrees
of latitude) increases.

Southern CONUS test area We compare random forest model inference to the ground truth in
the Southern CONUS test area. Visual agreement seems relatively well achieved, with some notable
discrepancies in Texas and New Mexico where vegetation types differ significantly from the training
region (Alaska and northern CONUS).
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Table 4: Model performances for EVTGP (80 classes) across 3 distinct test regions. Canada South
and Canada West combined comprise the test set in Table 3 (see Data Splits in Section 2).

Canada South Canada West Southern CONUS

ACC J F1 ACC J F1 ACC J F1
Logistic Regression 0.33 0.07 0.11 0.64 0.21 0.29 0.38 0.10 0.16
Random Forest 0.40 0.11 0.16 0.68 0.27 0.37 0.48 0.14 0.21
Gradient Boosted Trees 0.36 0.07 0.10 0.63 0.08 0.11 0.30 0.06 0.11
Segmentation Model 0.40 0.10 0.15 0.68 0.23 0.31 0.46 0.10 0.16

Table 5: Test results (Accuracy, Jaccard and F1 scores) for different models across distinct latitude
bands within the CONUS region.

Lat. 41.6 to 38.6 Lat. 38.6 to 35.6 Lat. 35.6 to 33.6

ACC J F1 ACC J F1 ACC J F1

Gradient Boosted Trees
EVTPHYS (13 classes) 0.76 0.42 0.53 0.69 0.34 0.45 0.55 0.26 0.37

Segmentation Model
EVTGP (80 classes) 0.58 0.13 0.19 0.48 0.09 0.14 0.34 0.06 0.09

a) b)

Gt vs. rf (seg 
bottom right)

Figure 7: Southern CONUS test area (below latitude 41.6). EVTGP ground truth (a) versus inference
using random forest (b)

Comparing model inferences We compare model inferences of EVTGP and EVTPHYSfor all
models in Figures 8 and 9. Overall, good consistency is observed. Inference from logistic regression
looks quite different for EVTGP.

On a zoomed-out prediction map, the majority of predicted pixel classes look consistent between
the four evaluated models. One notable observation is that the segmentation model inference results
in regions of more consistent vegetation than the other models (thresholding). Other model outputs
appear more noisy, with neighboring pixels less likely to belong to the same vegetation class and
less clearly defined class boundaries (more akin to LANDFIRE EVT data). This behavior exhibited
by the segmentation model doesn’t necessarily mean it underperforms when comparing its outputs
to satellite imagery, quite the contrary. One notable example is near Peace River in AB, Canada
(Figure 10). In this region, the segmentation model correctly identifies (verified by satellite imagery)
sections of agricultural land (in brown). Logistic regression, random forests, and gradient boosted
trees (pictured) all incorrectly label large sections of the region as shrubland (blue). While this
example is not necessarily representative across the entire datasets, it does point to the possibility that
the metrics are not capturing true generalization or performance of respective models.
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a) b)

c) d)

Figure 8: EVTPHYS (13 classes) inference in Canada using: (a) logistic regression, (b) random forest,
(c) gradient boosted trees and (d) segmentation model.

a) b)

c) d)

Figure 9: EVTGP (80 classes) inference in Canada using: (a) logistic regression, (b) random forest,
(c) gradient boosted trees and (d) segmentation model.

a) c)

b) d)

Figure 10: Segmentation model captures agriculture land (brown EVTPHYS) better than gradient
boosted tree near Peace River in AB, Canada. a) Segmentation model inference, b) Gradient boosted
tree model inference, c) Satellite imagery, d) Satellite zoomed-in imagery.
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