Operator Learning for Power
Systems Simulation
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Our aim is to accelerate time-domain power
system simulation with operator learning for
scalable, resolution-invariant modeling Iin
renewable-rich grids.



Why simulate the power grid?

e Simulations help assess the
stability of the grid after
disturbances (e.g., faults,
sudden generation loss,
renewable fluctuations).

» Modern power systems
require high resolution
simulation to capture the
fast, novel dynamics
associated with renewables.

Disturbance

N,

’

ft

Pre-disturbance Post-disturbance




Single-Machine Infinite-Bus

I

1.00 -

0.75-
() (rad/s)

0.50 -

0.25 -

0.00

—0.25 1

—0.50 1

—0.75 1

Data Generation

fi

A

Stable Disturbance | s5-

Pre- Post-Disturbance

—1.00

Time (s)

Swing Equation:
P _
ot?

4.0 1

3.0 -

2.5 A

2.0 1

1.5 -

1.0 -

0.5 -

0.0

[E||V]
S

in5>
Unstable Disturbance

(Pm—D




Operator Learning
Mapping from function space to function space

 Neural Operators map between two
function spaces, enabling resolution- :>
invariant inference.

 Deep Operator Networks (on the

right): An explicit operator with dual (741 « oo T4n]
networks for history encoding and point
evaluation Trunk Net Branch Net
Encodes a representation Encodes the input
* Fourier Neural Operators: An implicit e e cton at a set offixec
operator that learns mappings in the PG
Fourier domain using spectral
COnVO| UthﬂS Deep Operator Network

 Latent Neural ODEs: An explicit
operator encoding history into a latent /W
space, where a learned NODE evolves Tt

states decoded to match outputs I+



Zero-shot Super-Resolution

Train on Coarse, Generate at Fine Resolution
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Model Name Coarse Resolution Fine Resolution %Difference (95% ClI)
DeepONet 0.0220 = 0.0001 0.0348 + 0.0002 45.2% (39.0, 51.3)
FNO 0.0186 = 0.0001 0.0302 + 0.0001 47.5% (39.9, 54.8)
LNODE (Fixed) 0.0280 + 0.0006 0.0305 + 0.0006 8.6% (0.5, 33.6)
LNODE (Adaptive) 0.0275 + 0.0003 0.0296 x= 0.0003 7.3% (0.4, 19.7)
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Generalization Across Stability Boundaries
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Generalization Across Stability Boundaries

* Neural Operator style
networks are better for
generalization across
dynamical regimes

 LNODEs struggle to
robustly manage both
regimes simultaneously
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Conclusions

Key Takeaway: Operator learning is a promising direction for resolution-
invariant grid simulation, but there is a lot of care needed when verifying
generated trajectories.

Next Steps: Scale to grids with renewables and more complex disturbance
paradigms.
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