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Abstract

Time domain simulation, i.e., modeling the system’s evolution over time, is a crucial
tool for studying and enhancing power system stability and dynamic performance.
However, these simulations become computationally intractable for renewable-
penetrated grids, due to the small simulation time step required to capture renewable
energy resources’ ultra-fast dynamic phenomena in the range of 1-50 microseconds.
This creates a critical need for solutions that are both fast and scalable, posing a
major barrier for the stable integration of renewable energy resources and thus
climate change mitigation. This paper explores operator learning, a family of
machine learning methods that learn mappings between functions, as a surrogate
model for these costly simulations. The paper investigates, for the first time, the
fundamental concept of simulation time step-invariance, which enables models
trained on coarse time steps to generalize to fine-resolution dynamics. Three
operator learning methods are benchmarked on a simple test system that, while
not incorporating practical complexities of renewable-penetrated grids, serves as a
first proof-of-concept to demonstrate the viability of time step-invariance. Models
are evaluated on (i) zero-shot super-resolution, where training is performed on a
coarse simulation time step and inference is performed at super-resolution, and (ii)
generalization between stable and unstable dynamic regimes. This work addresses
a key challenge in the integration of renewable energy for the mitigation of climate
change by benchmarking operator learning methods to model physical systems.

1 Introduction

The increasing penetration of renewable and distributed energy resources has introduced novel
dynamic phenomena to the power grid, creating new challenges for system stability analysis. Time
domain simulation has been used as a reliable tool for studying system stability. In general, power
systems time domain simulation involves the numerical integration of nonlinear differential-algebraic
equations [12]], which are computationally intensive. This bottleneck has rendered system-wide
simulation computationally intractable as renewable generation grows, given the need for fine-grained
integration time steps to capture novel dynamics associated with inverters [[15} [19]. Recent grid
incidents, such as the April 2025 massive blackout in Spain and Portugal, underscore these limitations
and the need for scalable, real-time analysis tools. Overcoming this computational barrier is crucial to
the stable integration of renewable energy sources as mandated by climate change mitigation policies.

Prior works on machine learning (ML)-based modeling for power system simulation can be broadly
categorized into two approaches. First are methods that use classifiers to determine system stability
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status and/or stability margin post-disturbance [8} 9 22| 24} 25]. These are not in the scope of
this paper due to their inability to be used as surrogate models for time domain simulation. While
helpful for stability prediction, they cannot be used for control design and stability enhancement.
Second are approaches that have used surrogate models to produce trajectories from initial conditions
[4} 16} 13 [18] 23]]. Surrogate modeling can be further subdivided into two approaches. The first
replaces a component in the full simulation with a model that approximates its differential equations
[4,123]]. This has the advantage of being incorporated directly into existing simulation frameworks,
but necessitates significant complexity to create an interface to integrate the machine learning-based
component into the differential equations for the rest of the system [4]. Another approach, which is
the focus of this paper, is to devise a surrogate data-driven model for the entire system. However, a
surrogate model of the full system requires extensive training, verification, and generalization tests.

In this paper, a surrogate model is used to learn a function, in this case an operator, that maps from an
initial disturbed trajectory of a test system. Operator learning has emerged in scientific ML offering
discretization invariance, and thus the potential to generalize across resolutions. The immediate
contributions of this study are: (i) a comparison of three operator learning methods on zero-shot
super-resolution generalization, and (ii) an analysis of the generalization between stable and unstable
regimes. The long-term contributions of the paper are: (i) providing a path for stable integration of
renewable energies through a scalable and computationally tractable analysis tool, and (ii) tackling
machine learning for modeling complex physical systems.

2 Operator Learning

Operator learning approximates a mapping between two infinite-dimensional spacesﬂ [2, (11} [16]].
Methods in operator learning enable discretization-invariant predictions through algorithmic and
architectural designs. This property allows models trained on coarse time domain simulations
(At = 100 ms) to potentially generalize to finer simulation time steps (At = 50 us), reducing the
need for computationally-intensive high-resolution simulation to generate training data for a surrogate
model. In this paper, we learn an operator G that maps from an initial trajectory ¢ € [0, 7] to a future
expected trajectory generated from an ordinary differential equation ¢ € [r;, T').

Deep Operator Networks (DeepONets) [16] use two neural network branches: a branch network
processes the input trajectory, and a trunk network encodes the output query time. Their outputs are
combined via an inner product to produce the predicted trajectory value.

Fourier Neural Operators (FNOs) [10, [11,|14] project inputs into a Fourier basis, apply learned
spectral multipliers, and transform back to the time domain. Tensorization reduces parameter count
while preserving accuracy compared to standard FNOs. This spectral representation can capture
smooth temporal structures and support resolution changes.

Latent Neural ODEs (LNODEs) [5] encode the input trajectory into a latent state, evolve it through
a neural ODE, and decode it back to the original space. We use an autoencoder variation rather
than a variational autoencoder for a fairer comparison. The fixed-step (Adams) and adaptive-step
(Dormand-Prince—Shampine) solvers are evaluated.

The rationale for selecting the above methods is as follows: neural ODEs have been used in the prior
art to model independent components of a power system to integrate into a traditional simulation
[4) 23]]. DeepONets have been applied to post-disturbance power system modeling [[18]. FNOs, while
suitable for the task, have not been used for power system modeling. This paper presents the first step
towards the application of FNOs to power system modeling.

3 Experimental Setup

3.1 SMIB Test System

This study focuses on a single-machine infinite-bus (SMIB) test system, which is a single synchronous
machine connected to a stiff, i.e., fixed voltage and frequency, source via a transmission line [20].
Without the loss of generality, the generator angle dynamics are used for this study, associated with
a classic stability phenomenon: if a generator’s mismatch between input mechanical and output

'The interested reader should refer to [16]) and [1T]] for more details on the operator learning problem setting.



electrical powers exceeds a critical threshold after a disturbance, i.e., any change that alters the
steady-state or normal dynamic behavior of the system, the machine can no longer maintain a stable
exchange of power with the grid. This instability is a well-known real-world phenomenon in power
systems and continues to pose practical challenges. As such, the SMIB, despite its simplicity, serves
as a suitable candidate to explore new proof-of-concept simulation approaches; it is simple enough to
isolate the fundamental dynamics, yet rich enough to reflect practical stability issues.

A synchronous machine angle dynamics are governed by the following equation:
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where d(t) is the rotor (power) angle in electrical radians, P, is the mechanical power input per-
unitized on the machine base, D is the damping coefficient in per unit power per radians/s, £ and V'
are the machine and stiff source voltages per unitized on a common base, X is the reactance of the
transmission line between the two sources in per unit, H is the inertia constant in seconds, and f is the
nominal frequency in Hz. At steady state, the pre-disturbance rotor angle is 6o = sin™'(P,, / P12X),
where P"®* = |E||V|/X is the maximum transferable electrical power. A disturbance at ¢ = 0
changes the mechanical input from P, to P,,;. In the undamped case (D = 0), the maximum

post-disturbance mechanical input preserving stability is:
PR = P Sin(m — Omax) )
0 = (dmax — 00) SIN(Omax) + €0S(Omaz) — cos(dp). 3)

where 0.« is determined by Equation (3). Integration is performed using Runge-Kutta of order 5(4).

3.2 Data Generation and Model Training

SMIB trajectories are generated in stable and unstable regimes by sampling the P,, ~ |0, 2], and
damping D ~ [0.0,0.135]. For stable regimes, we sample P,,,; ~ U[0.0, P2#*] assuming D = 0
to avoid mislabeled trajectories. For unstable trajectories, the lower bound of the unstable range
is approximated using a 100-iteration bisection search over the range [P29* P...] [7]. SMIB
parameters are resampled if P,,x does not result in an unstable trajectory. Other parameters are
taken from an example in [20]: £ = 1.35, V = 1.0, X = 0.65, H = 9.94, and f, = 60. These may
not reflect a practical power system but their values are unlikely to change the conclusions. Each
dataset had 8000 training trajectories and 1000 validation trajectories. The input sequence covers
t € [0,0.2] s and the target covers ¢ € [0.3,3.1] s. The input features J is clipped to a max value of 7
and x = [), w| are normalized such that § € [0, 1] and w € [—1, 1] using ranges in the training set.

Each model is tuned through 120 trials using a Bayesian hyperparameter optimization method [1} 3]
with a small number of epochs (20 for the LNODE and FNO and 200 for the DeepONets). All
the models have approximately ~ 700, 000 parameters to ensure a fair comparison. Using the best
hyperparameter settings, each model was trained to obtain a reasonable validation error, or until the
validation error stopped decreasing. The LNODEs and FNOs took 60 epochs, while the DeepONets
took 600 epochs. All methods used the H1 Sobolev norm loss for training (see [[L1] for details).

4 Results

Zero-Shot Super-Resolution: Models are trained on data generated on a coarse time step (100 ms)
and compared on their generalization to data generated on a fine time step (50 ps) without retraining.
Results are reported in Table [1| with example trajectories in Figure[l| Overall, the LNODE outper-
formed both DeepONets and FNOs, with the LNODE achieving the lowest change in performance
between the resolutions. While the FNOs outperformed the other approaches in absolute RMSE on
the original training resolution, they had the highest drop in performance for the higher resolution.

Generalization across different dynamic regimes: The models are trained on two datasets: one
with 0% unstable trajectories and one containing 20% unstable trajectories for training. The models
are compared on their performance for a single SMIB system, P,, = 0.4 and D = 0.05, and a sweep
over the post-disturbance mechanical power P,,;. The system loses stability at a critical threshold
marked by the red dashed line in Figure[2} As seen in Figure 2] the methods struggle to generalize to
dynamical regimes not covered by the training data; this is consistent with prior observations [21]].



Model Name | At =100ms (RMSE) | At = 50us (RMSE) | Percent Difference

DeepONet 0.0220 & 0.0001 0.0348 £ 0.0002 15.2(39.0,51.31)
FNO 0.0186 -+ 0.0001 0.0302 -+ 0.0001 47.5(39.9,54.8)
LNODE (Fixed) 0.0280 + 0.0006 0.0305 = 0.0006 8.6(0.5, 33.6)
LNODE (Adaptive) 0.0275 + 0.0003 0.0296 -+ 0.0003 7.3(0.4,19.7)

Table 1: Zero-Shot Super-Resolution: Values are reported over 200 test trajectories and 20 indepen-
dent runs. Both resolution datasets use the same SMIB parameters. Bootstrap confidence intervals
are used for the percent difference and standard errors are reported for RMSE values.
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Figure 1: Zero-Shot Super-Resolution: This figure illustrates the true time series of the system
angle (9) and frequency (w) dynamics in solid lines and the operators’ predicted trajectories in dotted
lines. The plots start with the segment of the true trajectory in a solid blue line used as the input.
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Figure 2: Generalization across different dynamical regimes: Training data has 0% (blue) and
20% (orange) unstable trajectories. The green dotted line is where P,,; = Py, i.e., no disturbance,
and the red dotted line is the critical point where trajectories become unstable. The mean absolute
scaled error is calculated using a baseline-prediction of the previous time step over 20 runs.

When trained with a mixture of stable and unstable trajectories, all the methods are able to capture
the unstable region’s dynamics, while the DeepONet is the only method to perform similarly in the
stable regime when the training dataset includes both stable and unstable trajectories.

5 Discussion

The main limitation of this work is the simplicity of the SMIB, which does not capture the complex
dynamics of renewable-penetrated grids. Although all methods performed well, comprehensive
modeling and testing on practical test systems are needed to draw generalizable conclusions. For
example, on this simple test system, the FNO was shown to outperform alternatives in absolute error in
the two evaluation tasks, but the DeepONets and LNODE approaches are likely to be competitive with
different inductive biases [17]; more tests are needed to prove this. This study provides a controlled
setting to establish the feasibility of time step-invariant operator learning. This capability addresses a
major bottleneck in renewable-penetrated power system analysis through time domain simulation,
ultimately supporting the transition to low-carbon grids needed for climate change mitigation.

GitHub Repository: https://github.com/mkschleg/NOForPSSim.git
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