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Motivation: Need for Remote Estimation of Aquifer Properties 

• Subsidence sensitivity depends on coarse-grain ratio (CGR)

• Traditional borehole-based CGR measurements are
• Costly, sparse, and geographically limited
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Source- USGS

• Subsidence ∝ 1

Coarse−grain ratio
 × Groundwater loss

Source: kompas.comSource: cleanwater.org

• Knowing the CGR helps in understanding better the aquifer behavior
• Better water-management



Sky to Subsurface approach

Soil Type Behavior Under Stress Observed Subsidence

Fine-grained (clays/silts) Compressible — 
inelastic compaction Large, often irreversible

Coarse-grained 
(sands/gravels)

Mostly elastic 
deformation Small, recoverable

Subsidence response 
encodes geologic 
composition.

Input What It Measures Why It’s Needed

Sentinel-1 InSAR Land subsidence Gives compaction 
signature (effect)

GRACE/GLDAS Groundwater storage 
change

Gives pore pressure 
change signature (cause)

• Satellite data + Physics (poroelasticity + effective stress theory)

• How much compaction occurs depends on soil type — specifically coarse-grain ratio (CGR):
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• California’s Central Valley supports a quarter of U.S. food production and relies heavily on groundwater, 

supplying ~20% of national demand. 

• Intensive groundwater pumping has led to significant land subsidence in California’s Central Valley.



Time-series Sentinel 1 InSAR 
land subsidence data

Time-series GRACE 
groundwater data

ML model

Input features

Temporal convolutional 
encoder + decoder

Predicted 
CGR

Poroelasticity & 
Stress theory

Physics 
derived 

subsidence 

Physics guided ML model

Target output Supervised loss 
(𝐿𝑑𝑎𝑡𝑎)

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝐿𝑡𝑜𝑡𝑎𝑙

𝐿𝑡𝑜𝑡𝑎𝑙

= 𝜆𝑑𝐿𝑑𝑎𝑡𝑎 𝐶𝐺𝑅𝑝𝑟𝑒𝑑 , 𝐶𝐺𝑅𝑜𝑏𝑠 + 𝜆𝑝𝐿𝑝ℎ𝑦𝑠𝑖𝑐𝑠 𝛿𝑧𝑝𝑟𝑒𝑑 , 𝛿𝑧𝑜𝑏𝑠

𝑆𝑠𝑘 = 𝑆𝑠𝑘,𝑓𝑖𝑛𝑒 1 − 𝐶𝐺𝑅𝑝𝑟𝑒𝑑 + 𝑆𝑠𝑘,𝑐𝑜𝑎𝑟𝑠𝑒𝐶𝐺𝑅𝑝𝑟𝑒𝑑 𝛿𝑧𝑝𝑟𝑒𝑑 = −
𝑆𝑠𝑘

𝑆𝑠
𝛿𝑑𝑔𝑤𝑠

Physics Guided ML approach
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Physics-based loss 
(𝐿𝑝ℎ𝑦𝑠𝑖𝑐𝑠)

+



Results

• Case A: Integrating poroelasticity theory with GRACE and Sentinel-1 data yields strong generalization

Mean Uncertainty: 0.011 Mean absolute error: 0.025



Results Continued…

Corr: 0.90, NSE: 0.81 

• Case A: Integrating poroelasticity theory with GRACE and Sentinel-1 data yields strong generalization



• Case B: Without physics, fit improves slightly (Corr: 0.92, NSE: 0.83, Mean Uncertainty: 0.0235) but 

model overfits noise and loses physical consistency.

Results Continued…
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• Case C: Embedding physics (GWS + poroelasticity) enforces causality, physical consistency, and lowers 

prediction uncertainty and extrapolation risk.

• Case D: Excluding location to test spatial generalization shows robust performance (Corr: 0.88, NSE: 0.76, 

Mean Uncertainty: 0.014).



Conclusion

• Remote estimation of CGR, scalable approach
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• Embedding poroelasticity theory improves physical interpretability

• Expanding to additional locations

• Extending training on longer multi-year time series

• Integrating InSAR data from NASA–ISRO’s NISAR mission

and Future Work



Thank You

For follow-up discussion, please contact: 
hrusikesha.pradhan@jpl.nasa.gov

Open to future opportunities
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