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Motivation: Need for Remote Estimation of Aquifer Properties

Source: cleanwater.org Source: kompas.com
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e Subsidence « x Groundwater loss

Coarse—grain ratio

 Subsidence sensitivity depends on coarse-grain ratio (CGR)

 Knowingthe CGR helps in understanding better the aquifer behavior
* Better water-management

 Traditional borehole-based CGR measurements are
 Costly, sparse, and geographically limited

Source- USGS
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Sky to Subsurface approach

* How much compaction occurs depends on soil type — specifically coarse-grain ratio (CGR):

Soil Type Behavior Under Stress Observed Subsidence

Compressible —

. ) . Large, often irreversible Subsidence response
inelastic compaction

encodes geologic
composition.

Fine-grained (clays/silts)

Coarse-grained Mostly elastic

(sands/gravels) Ao a6 Small, recoverable

e Satellite data + Physics (poroelasticity + effective stress theory)

_ What It Measures Why It’s Needed

Gives compaction

Sentinel-1 InSAR Land subsidence :
signature (effect)
GRACE/GLDAS Groundwater storage Gives por.e pressure
change change signature (cause)

* California’s Central Valley supports a quarter of U.S. food production and relies heavily on groundwater,
supplying ~20% of national demand.

* Intensive groundwater pumping has led to significant land subsidence in California’s Central Valley.
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Physics Guided ML approach

Physics guided ML model
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Results

True CGR Predicted CGR
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Case A: Integrating poroelasticity theory with GRACE and Sentinel-1 data yields strong generalization
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Results Continued...
 Case A: Integrating poroelasticity theory with GRACE and Sentinel-1 data yields strong generalization
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Corr: 0.90, NSE: 0.81



Results Continued...

« Case B: Without physics, fit improves slightly (Corr: 0.92, NSE: 0.83, Mean Uncertainty: 0.0235) but

model overfits noise and loses physical consistency.

« Case C: Embedding physics (GWS + poroelasticity) enforces causality, physical consistency, and lowers

prediction uncertainty and extrapolation risk.

« Case D: Excluding location to test spatial generalization shows robust performance (Corr: 0.88, NSE: 0.76,

Mean Uncertainty: 0.014).
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Conclusion and Future Work

* Remote estimation of CGR, scalable approach

* Embedding poroelasticity theory improves physical interpretability

Expanding to additional locations

Extending training on longer multi-year time series

Integrating INSAR data from NASA-ISRO’s NISAR mission
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Thank You

Open to future opportunitie

For follow-up discussion, please contact:
hrusikesha.pradhan@jpl.nasa.gov
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