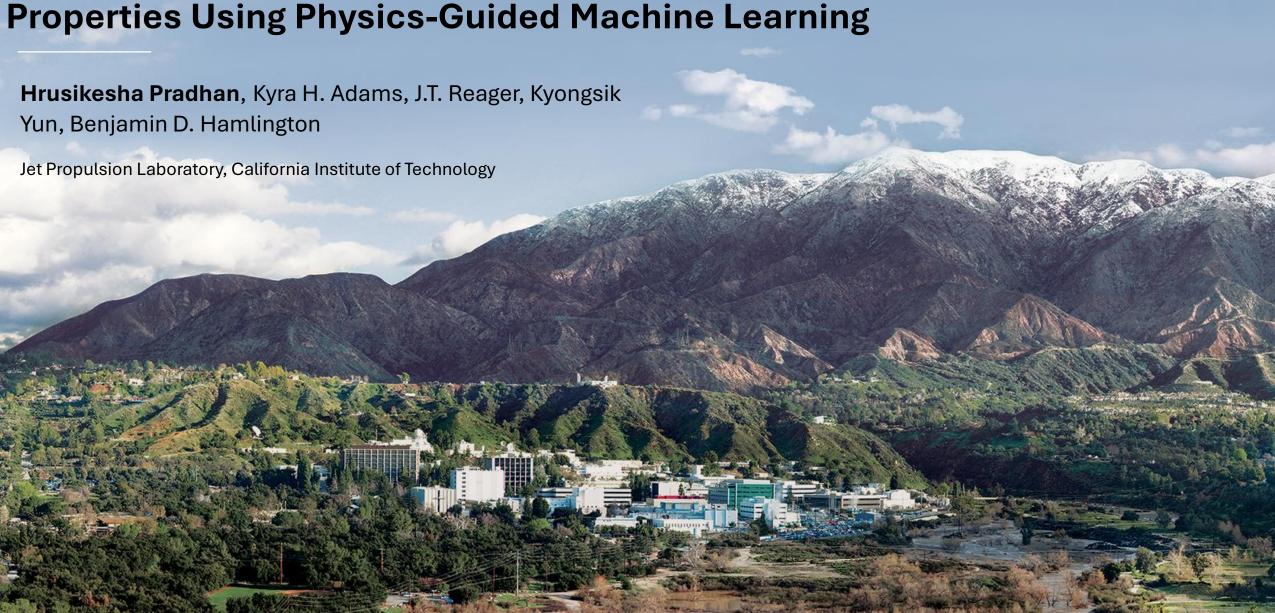
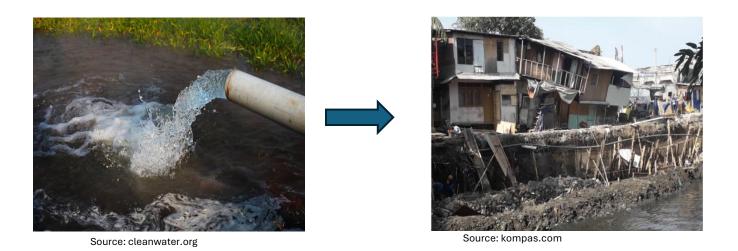
Satellite-Based Estimation of Soil Geologic Properties Using Physics-Guided Machine Learning



Jet Propulsion Laboratory

California Institute of Technology

Motivation: Need for Remote Estimation of Aquifer Properties



- Subsidence $\propto \frac{1}{\text{Coarse-grain ratio}} \times \text{Groundwater loss}$
- Subsidence sensitivity depends on coarse-grain ratio (CGR)
- Knowing the CGR helps in understanding better the aquifer behavior
 - Better water-management
- Traditional borehole-based CGR measurements are
 - Costly, sparse, and geographically limited

Source- USGS

Sky to Subsurface approach

• How much compaction occurs depends on soil type — specifically coarse-grain ratio (CGR):

Soil Type	Behavior Under Stress	Observed Subsidence
Fine-grained (clays/silts)	Compressible — inelastic compaction	Large, often irreversible
Coarse-grained (sands/gravels)	Mostly elastic deformation	Small, recoverable

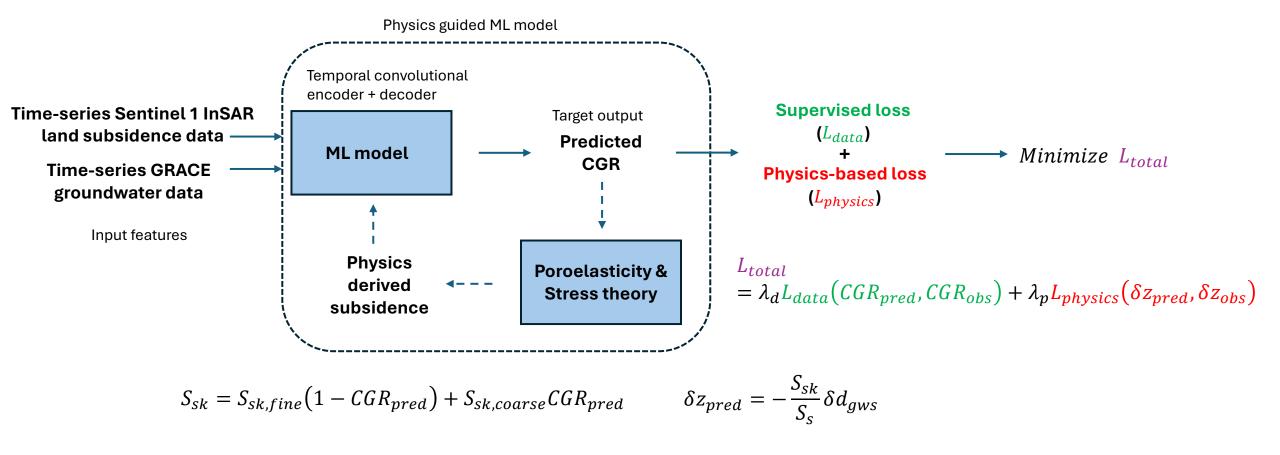
Subsidence response encodes geologic composition.

Satellite data + Physics (poroelasticity + effective stress theory)

Input	What It Measures	Why It's Needed
Sentinel-1 InSAR	Land subsidence	Gives compaction signature (effect)
GRACE/GLDAS	Groundwater storage change	Gives pore pressure change signature (cause)

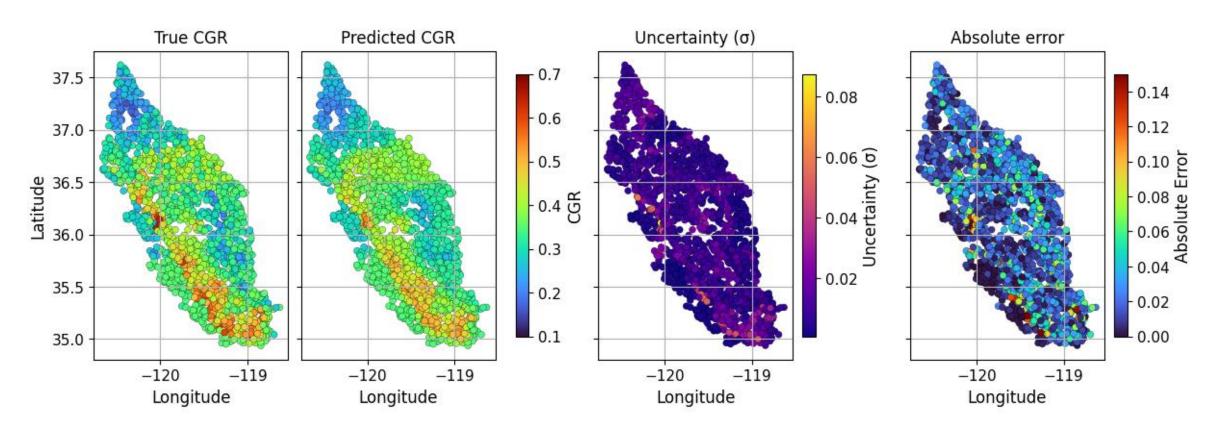
- California's Central Valley supports a quarter of U.S. food production and relies heavily on groundwater, supplying ~20% of national demand.
- Intensive groundwater pumping has led to significant land subsidence in California's Central Valley.

Physics Guided ML approach



Results

• Case A: Integrating poroelasticity theory with GRACE and Sentinel-1 data yields strong generalization

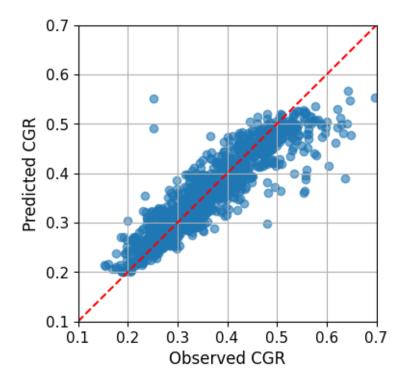


Mean Uncertainty: 0.011

Mean absolute error: 0.025

Results Continued...

• Case A: Integrating poroelasticity theory with GRACE and Sentinel-1 data yields strong generalization



Corr: 0.90, NSE: 0.81

Results Continued...

• Case B: Without physics, fit improves slightly (Corr: 0.92, NSE: 0.83, Mean Uncertainty: 0.0235) but model overfits noise and loses physical consistency.

- **Case C**: Embedding physics (GWS + poroelasticity) enforces causality, physical consistency, and lowers prediction uncertainty and extrapolation risk.
- Case D: Excluding location to test spatial generalization shows robust performance (Corr: 0.88, NSE: 0.76,
 Mean Uncertainty: 0.014).

Conclusion and Future Work

- Remote estimation of CGR, scalable approach
- Embedding poroelasticity theory improves physical interpretability

- Expanding to additional locations
- Extending training on longer multi-year time series
- Integrating InSAR data from NASA–ISRO's NISAR mission

Thank You

Open to future opportunities

For follow-up discussion, please contact: hrusikesha.pradhan@jpl.nasa.gov

