
Satellite-Based Estimation of Soil-geology 

Using Physics-Guided Machine Learning

Background and Motivation

California’s Central Valley supports a quarter of U.S. food production and

relies heavily on groundwater, supplying ~20% of national demand. Intensive

pumping has caused widespread land subsidence and loss of aquifer storage.

The extent of this subsidence depends on the soil’s coarse-grain ratio

(CGR)—fine-grained layers compact more inelastically. Traditional CGR

measurements from boreholes are sparse, costly and geographically limited.
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• Sky-to-subsurface approach: Physics-guided ML framework integrating

satellite observations with physics to infer subsurface geologic composition.

• Data–physics integration: Sentinel-1 InSAR subsidence and GRACE-

derived groundwater-storage with effective stress and poroelasticity theory.

• Scalable approach: Maps soil characteristics, supporting improved

groundwater management and climate adaptation in data-sparse regions.

Climate Impact

• CGR helps quantify how groundwater pumping drives land

subsidence, supporting better groundwater management decisions.

• CGR indicates how aquifers respond to pumping, helping identify

areas vulnerable to land subsidence..

• By linking satellite-based monitoring with physics-informed AI, this

work provides a scalable tool to assess how aquifers respond to

changing climate and extraction pressures.

• Inferring subsurface soil composition from space enables identification

of regions prone to irreversible subsidence and water loss, supporting

adaptation strategies under increasing drought frequency.

• The framework bridges Earth observation, hydrogeologic physics,

and AI, advancing climate-resilient water management.

min 𝐿𝑑𝑎𝑡𝑎 𝐶𝐺𝑅𝑝𝑟𝑒𝑑 , 𝐶𝐺𝑅𝑜𝑏𝑠

s. t. 𝛿𝑧𝑝𝑟𝑒𝑑 = 𝛿𝑧𝑜𝑏𝑠

Study Details

• Study focuses on California’s Central Valley, a region experiencing

severe land subsidence due to prolonged groundwater extraction.

• Land Subsidence: Sentinel-1 InSAR data (Tracks 42 & 144, 2014–

2020) with 2 km × 2 km resolution.

• Groundwater Storage (GWS): GRACE-DA/GLDAS 2.2 data (daily,

0.25° resolution), interpolated to match the InSAR grid.

• Soil Geology: USGS CVHM geotexture dataset (~8,500 boreholes)

providing coarse/fine-grain composition.

• Temporal encoder—implemented as a Temporal Convolutional

Network (TCN)—with a fully connected decoder for spatial prediction.

• TCN captures groundwater–subsidence dynamics, while the combined

data-driven and physics-based loss improves generalization.
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Discussion and Future Work
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𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝐿𝑡𝑜𝑡𝑎𝑙

𝐿𝑡𝑜𝑡𝑎𝑙 = 𝜆𝑑𝐿𝑑𝑎𝑡𝑎 𝐶𝐺𝑅𝑝𝑟𝑒𝑑 , 𝐶𝐺𝑅𝑜𝑏𝑠 + 𝜆𝑝𝐿𝑝ℎ𝑦𝑠𝑖𝑐𝑠 𝛿𝑧𝑝𝑟𝑒𝑑 , 𝛿𝑧𝑜𝑏𝑠

𝑆𝑠𝑘 = 𝑆𝑠𝑘,𝑓𝑖𝑛𝑒 1 − 𝐶𝐺𝑅𝑝𝑟𝑒𝑑 + 𝑆𝑠𝑘,𝑐𝑜𝑎𝑟𝑠𝑒𝐶𝐺𝑅𝑝𝑟𝑒𝑑, 𝛿𝑧𝑝𝑟𝑒𝑑 = −
𝑆𝑠𝑘
𝑆𝑠

𝛿𝑑𝑔𝑤𝑠

• This study demonstrates that CGR can be effectively predicted remotely by

leveraging satellite based temporal measurements, and by exploiting the

interdependency of subsidence and GWS variations.

• Embedding physics (GWS and poroelasticity) ensures causality, physical

consistency, reduces prediction uncertainty and extrapolation risks.

• We plan to expand model training to include additional geographic regions and

longer multi-year time series, enabling improved spatial generalization and

better capture of wet/dry cycles and seasonal aquifer behavior.

• Integrating higher temporal resolution InSAR data from NASA–ISRO’s NISAR

mission to improve subsidence characterization and test global scalability.
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• Case A: Physics-informed ML model, integrating poroelasticity theory

with GRACE and Sentinel-1, achieves strong performance on unseen

test data (Correlation: 0.90, NSE: 0.81, Mean Uncert.: 0.011).

• Case B: To evaluate generalization to new geographic regions, location was

excluded. The model still performs well (Correlation: 0.88, NSE: 0.76, Mean

Uncert.: 0.014), demonstrating improved spatial robustness.

• Case C: Excluding physics improves numerical fit (Correlation: 0.92, NSE:

0.83, Mean Uncert.: 0.0235), model tends to overfit noise and lacks ability to

leverage groundwater information and is less physically consistent.
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