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Background and Motivation Contribution Climate Impact
California’s Central Valley supports a quarter of U.S. food production and + Sky-to-subsurface approach: Physics-guided ML framework integrating
relies heavily on groundwater, supplying ~20% of national demand. Intensive satellite observations with physics to infer subsurface geologic composition. * CGR helps quantify how groundwater pumping drives land
pumping has caused widespread land subsidence and loss of aquifer storage. - Data—physics integration: Sentinel-1 InSAR subsidence and GRACE- subsidence, supporting better groundwater management decisions.
The extent of this subsidence depends on the soil's coarse-grain ratio derived groundwater-storage with effective stress and poroelasticity theory. * CGR indicates how aquifers respond to pumping, helping identify
(CGR)—fine-grained layers compact more inelastically. Traditional CGR  Scalable approach: Maps soil characteristics, supporting improved areas vulnerable to land subsidence..
measurements from boreholes are sparse, costly and geographically limited. groundwater management and climate adaptation in data-sparse regions. * By linking satellite-based monitoring with physics-informed Al, this
o e GRAGE work provides a scalable tool to assess how aquifers respond to
% % changing climate and extraction pressures.
 Inferring subsurface soil composition from space enables identification
@ ( Physics- | of regions prone to irreversible subsidence and water loss, supporting
N _ gfid::C:'V: adaptation strategies under increasing drought frequency.
L\ + . « The framework bridges Earth observation, hydrogeologic physics,
T casticty | and Al, advancing climate-resilient water management.
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Results Results Continued...
StUdy Details Case A

True CGR e Uneetent) - Case B: To evaluate generalization to new geographic regions, location was

excluded. The model still performs well (Correlation: 0.88, NSE: 0.76, Mean
Uncert.: 0.014), demonstrating improved spatial robustness.

« Case C: Excluding physics improves numerical fit (Correlation: 0.92, NSE:
0.83, Mean Uncert.: 0.0235), model tends to overfit noise and lacks ability to
leverage groundwater information and is less physically consistent.

« Study focuses on California’s Central Valley, a region experiencing
severe land subsidence due to prolonged groundwater extraction.

« Land Subsidence: Sentinel-1 INSAR data (Tracks 42 & 144, 2014—
2020) with 2 km x 2 km resolution.

 Groundwater Storage (GWS): GRACE-DA/GLDAS 2.2 data (daily,
0.25° resolution), interpolated to match the INnSAR grid.

« Soil Geology: USGS CVHM geotexture dataset (~8,500 boreholes)
providing coarse/fine-grain composition.

« Temporal encoder—implemented as a Temporal Convolutional | | | | | |
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Network (TCN)—with a fully connected decoder for spatial prediction. Shgitiide Shgitiide tigitiida | _ _
. TCN captures groundwater—subsidence dynamics, while the combined « This study demonstrates that CGR can be effectively predicted remotely by
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Discussion and Future Work

_ _ _ Absolute error 0.7 . . e
data-driven and physics-based loss improves generalization. - leveraging satellite based temporal measurements, and by exploiting the
i 0.6 interdependency of subsidence and GWS variations.
Methodology 37.0 x 05- « Embedding physics (GWS and poroelasticity) ensures causality, physical
- consistency, reduces prediction uncertainty and extrapolation risks.
& 36.5 9 0.4 o . o . _
2 S  We plan to expand model training to include additional geographic regions and
Physics guided ML model = = 0.3 ) . ] . . ] i .
T X = 36.0 . longer multi-year time series, enabling improved spatial generalization and
/T L lutional A : :
[ encoder o 0.2 better capture of wet/dry cycles and seasonal aquifer behavior.

Time-series Sentinel 1 INSAR _ 4 e e i o1+ - Integrating higher temporal resolution INSAR data from NASA-ISRO’s NISAR
a.n su s.l ence data : ML model ____, Predicted i Supervised loss —— Minimize L 350 - 01 02 03 04 05 06 07 o _ _ _ . .
Time-series GRACE __! CGR | (Lgaca) * Physics- total - Observed CGR mission to improve subsidence characterization and test global scalability.
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; Siden Stresstheory | 5.t.0Zprea = 0Zobs « Case A: Physics-informed ML model, integrating poroelasticity theory ACknOWIGdgement
\ subsidence J
e g with GRACE and Sentinel-1, achieves strong performance on unseen
: This research was carried out at the Jet Propulsion Laboratory, California
S . . . )
Ss = Sstcine(1 = CGRprea) + Ssiccoarse CGRprear  8zprea = _Sifadgws test data (Correlation: 0.90, NSE: 0.81, Mean Uncert.: 0.011). Institute of Technology, under a contract with the National Aeronautics
Leotar = AqLaata(CGRpreds CGRops) + ApLonysics (§Zpreds 8Zops) and Space Administration (NASA) (80NM0018D0004). © 2025 California
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