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o » Training on extreme values
» In many scientific disciplines, the target of

machine learning is to identify a mechanism recovers the true
instead of imitating it. mechanism.

» We present an analytical
» Measured values often do not directly enter the

mechanism, they interact via a dynamical system. prOOf and emplrlcal
» We want to learn the mechanism itself, not the evidence for a simple

Sl.Jrroun.dlng dynamlcs.. | example.
» Simulating the mechanism and the dynamical o
system together leads to biases. » Next: more realistic models

and real data.

» \We propose to train on the extreme values only

» Evaluate this using a simple example.
often almost fully
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» Extreme values
increase the
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e ragtio Dynamics: Mechanism:
‘ » When measuring temperature
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0 Q » The causal graph T =T, T NBP = aT, + BSM, +~v + € and soil moisture, we do not
becomes 1+ e~ (SMinTin—Go) measure at the tree roots but
e simpler. SM. — SM. Csm some distance away.
’ 1 4+ e~ (SMi Tin—Go) » The same is true temporally.

Theoretical Result

Relevance

Corollary 1: If we make reasonable assumptions, a linear regression on T;, and SM,, does not return > For example, the effects of soil water
the correct values o and 3, but and temperature on plant
o productivity are still unclear.
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1 — C+SM;, 1 — Csy T;, > Jungetal. (2017)find
However, if we train only on extreme values, we find that plant productivity sz

is locally mostly
influenced by water
availability but globally
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