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Abstract

Understanding the influence of meteorological drivers on the ecosystem is a cen-
tral problem in Earth’s system science. Deriving these influences directly from
observations is crucial. However, natural systems often have complex interactions,
where multiple drivers influence each other and the target variable simultaneously.
These interactions complicate our understanding of individual variable effects. For
instance, the relative importance of soil moisture and temperature on net biome
production remains unclear, with in-situ measurements and earth’s system models
yielding contradicting results. In this work, we propose a novel approach: training
on extreme values only. By focusing only on these values, we can better approxi-
mate the influences of meteorological drivers. We demonstrate the potential of this
approach through a simple example, validating it analytically and empirically.

1 Introduction

A major source of uncertainty in climate projections is the reaction of vegetation to increased
atmospheric CO4 concentrations and changes in climate [2]. A pathway to reduce this uncertainty
is to understand the relative importance of drivers of ecosystem productivity, the amount of CO4
the ecosystem will take up. Two of the most important drivers of ecosystem productivity are water
availability and temperature. However, determining the relative importance of these drivers is
challenging. Multiple papers have come to different conclusions concerning the relative importance
of temperature and soil moisture on ecosystem productivity. For example, [3] train a decision
tree-based model on in-situ eddy covariance measurements. They find that while soil moisture
anomalies are most important to explain the variation in net biome productivity (NBP) anomalies
locally, these effects cancel out globally such that the global NBP anomalies are mostly driven by
the global temperature anomalies. In contrast, [6]] run multiple large Earth system models and find
that suppressing the anomalies in soil moisture in these models also suppresses more than eighty
percent of the global NBP anomalies, indicating that, in these models, the effects of soil moisture
anomalies do not cancel out. One possible explanation for this difference is the interaction between
these drivers, as discussed in [[1]]. The authors evaluate the interaction between temperature and soil
moisture through evaporative cooling. They show that on a global scale, suppressing soil moisture
anomalies also leads to a suppression of temperature anomalies, indicating that there is a strong
indirect effect in addition to the direct effect. They conclude that the difference observed by [3]
and [6] are due to attributing this indirect effect to either temperature or soil moisture. However,
the work of [1]] cannot fully close the gap between the works of [3]] and [6]]. For example, when
attributing the indirect effect to soil moisture, also the local importance of temperature vanishes and
only soil moisture is important, which is not consistent with the results from in-situ measurements.
In this work, we present an avenue to better learn the direct effect of drivers, training only on extreme
values. We motivate this idea from a causal modeling perspective and take a simplified model of
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atmosphere-biosphere coupling in which we can prove analytically that this approach approximates
the true impact of different drivers while training on average data does not. Additionally, we simulate
data following this model and show that the better approximation outweighs the worse signal-to-noise
ratio that arises from only training on a fraction of the data.

2 A Motivation from a Causality Persepective

In Earth’s system science, causal graphs are a useful tool for understanding complex relationships
between variables [5]. A causal graph is a graph in which variables are represented as nodes, and
directed edges between nodes indicate the direction of causal influence. In other words, an edge
A — B indicates that intervening on A has a "direct" effect on B, meaning that if we change A
while keeping all variables except A and B constant, B will also change. In these graphs, many
calculations are infeasible. To be able to make inference, we have to decide which connections are
significant and which connections can be neglected. The graph might, however, remain complex after
removing insignificant links and calculations might yield results that are strongly influenced by noise.
The threshold of what is negligible depends on the strength of an effect in addition to the level of
noise. During extreme events, we normally find that the influence of one (or a group of) variables is
very strong, which raises the threshold as the relative influence of other processes shrinks. This leads
to an even sparser graph, where some of the processes might be easier to extract.

3 A Simple Example

We show the advantage of training on extreme values in a simple example: In this example, the
relationship between net biome production (NBP), temperature (T), and soil moisture (SM) is

NBP = oT, + BSM, + v +¢. (1)

Here, ¢ ~ N(0,0?) is a noise term representing the variation that is not determined by temperature
or soil moisture. Further, we assume that we are not measuring the temperature at the leaf but in
the air some distance away from the canopy, and the soil moisture is not measured at the root of the
plant but some distance away from it. Therefore, the temperature and soil moisture interact through
evaporative cooling before they influence NBP. To this end, we assume that the two values (7)., SM,.)
that directly influence NBP can be calculated from the measured values T;,, and SM;,,. The amount
of evaporative cooling depends on the product (7}, SM;,) and is limited by a maximum amount
that can cool/evaporate. The intuition is that only a combination of high temperature and high soil
moisture can lead to strong evapotranspiration and, that the maximum effect of evapotranspiration
becomes limited by the conductance of the surface. Therefore, we model 7. and SM,. as

CT CS M

Tr =Tin - 1+ e~ C1(SMinTin—Co) and  SMy = SMin — 1+ e C1(SMinTin—Co) " @

Depending on whether the values are extreme (SM;,, and T, large), we can make different simplify-
ing approximations: For non-extreme values, we can use the fact that S M, T, is close to the critical
constant Cy and approximate the exponential interaction with a first-order Taylor approximation. For
extreme values, we use the fact that S M;,,T;,, is much larger than the critical constant Cjy and hence,
the exponential interaction is at its maximum. Further, we assume that the interaction is still small
compared to the variations in the individual variables and, therefore, can be approximated by two
univariate regressions. Using these approximations, we arrive at the following corollary.

Corollary 1. If we can make the above assumptions, a linear regression on T;, and S M, does not
return the correct values o and 3 but

o 1-— CTSMmcl and B N 1- CSMTinCI. (3)

However, if we train only on extreme values, we find o* = « and (* = .

«

The calculations can be found in Appendix [A] This result shows that when using linear regression to
estimate the importance of temperature and soil moisture on NBP, training on extreme values provides
more accurate estimates, whereas training on non-extreme values can lead to biased estimates of the
individual importances due to the interaction between the variables.
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Figure 1: Plots of the estimated importance of the drivers and the bias when trained on only a
percentile of the data. Left: The values of 3, the linear coefficient of soil moisture, estimated on only
data with values above different percentiles (0, 50, 75, 90, 95) of the data. Middle: The same plot
for «, the linear coefficient of temperature. Right: The same plot for the bias of the prediction. The
dotted line in each plot represents the correct value (2, 0.1, 0) for the estimated quantity.

4 Emperical Experiments

To demonstrate that our approximations are reasonable, we simulate some data following the setup
described in Section [3] Details can be found in Appendix [B|and results in Figure [T} We find that
using only the top 5% of data significantly improves the accuracy of estimating « and 3, reducing the
error by 96.6% and 85.7%, respectively, compared to using all the data. However, this improvement
comes at the cost of increased bias, as the mean difference between predictions and labels increases.
Specifically, the error in bias is 96.9% larger when calculated using only the top quantiles compared
to using all the data. This trade-off highlights the benefits and limitations of training on extreme
values, which can better capture the influence of interacting drivers but may also introduce additional
bias.

5 Discussion

In the last three sections, we motivated why training on extreme events should give a better approxi-
mation of the importance of different drivers. We further presented some mathematical arguments
and empirical simulation results to underpin the effectiveness of this idea. However, this is only a first
step, and a lot of future research is needed before we can rely on this method for scientific discovery.
First, our simulated example is very idealized. As a next step, we need to test the relation again
with a more complex model, like the CLASS model[7]]. Further, the system we have simulated has
a saturation in the interaction but no saturation in the target variable. While we believe that this is
a reasonable model for the interaction of temperature, atmospheric vapour pressure, and soil water
content, it is unclear whether this can also be applied to other situations in Earth’s system science.
Additionally, for this study, we only use a linear model. While it is common to linearize effects
in order to calculate the importance of a driver, it would be good to understand whether the effect
also holds if we use a neural network instead. Finally, it would be a good idea to test the difference
between calculating the importance of different drivers on an observational dataset, for example, the
FLUXNet2015 dataset [4].

6 Conclusions

In this work, we proposed a method to estimate the importance of individual drivers of an ecosystem
variable, where drivers interact with each other. We motivated this method using causal inference and
demonstrated its effectiveness using in a simple example analytically and empirically. Our results
show that training on extreme events improves the accuracy of driver influence estimates but increases
the bias in the prediction. This is a first step, and further validation with more complex examples is
needed before applying the method. However, it could help resolve the disputed global influence of
water and temperature on net biome production.
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A Calculations
In this section, we show the calculation for the values of o* and 5* presented in Corollary ??.
For non-extreme values, we can make some simplifications. First, we assume that the normal

values are such that the product SM;,, T;, is close to the critical constant Cy. Hence, we can use the
first-order Taylor approximation for the exponential:

1+t “
which is valid for z close to zero. To use this approximation, we first extend the fraction to
C ¢C1(SMin Tin—Co)
T, = Tin - i = Tin — Cr : )
1+ ¢~ C1(SM;inTin—Co) eC1(SMinTin—Co) 4 |

Now, we can use the approximation for both parts of the fraction to find
1+ C1(SMinTin — Co)

T T = O (5 My T — Co) "
By using some simple modifications to the term, we find
T, = Tin — Cr <2 ;rf gij\;;\}inﬂn E’ (2'0) 1)
=T —Cr (1 T2y 01<SMlme - Co>) N
1 1
= Tin =201 (2 T 1+ Ci(SM Ty — Co>/2) '

Now, we use the abovementioned approximation in the opposite direction to get

N 1 1 L Ci(SMinTin—Co)/2
T, = Ty — 2CT <2 - ecl(SMinTin—Co)/2> =T, —2Cr <2 —e ! 0 . (8

Finally, we use the approximation again and simplify the relation to
1 M. T —
T ~Ty —2Cr | =—(1— Cl(S inlin CQ)
2 2
1 C SMann - C
=T —2CT <2+ 1 : 0)) )

= (1 — CpSMiyC)Tin — (1 — CoCy)Crr.

Equivalently, we find
SM, = (1 — CsyTinC1)SM;, — (1 = CoCr)Csn- (10)

While the factors obviously depend on the values of T}, and SM;,,, we can approximate them with
constant factors leading to
Tin = 67T +nr (1D
and
SMin = 0smSMy + s (12)

If we want to calculate o* and from the measurements, we assume that the correlation through the
interaction is that much smaller than the variation within the variable such that we can use a univariate
regression instead of a multivariate regression, we find
(NBP — E(NBP), Ty, — E(T;,))
<Tin7 Tzn>
_ (alTy ~E(T,)) + B(SM, — B(SM,)), 8r (T, — E(T,)) -
<5T(TT - E(Tr))v 5T(Tr - ]E(Tr)»
adr (T, — E(T}), T, — E(T},)) o«

82(T, — E(T,),T, — E(T))  or

*
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Figure 2: The distributions of simulated temperature and soil moisture. As a first step towards
realism, we simulated temperature as a normal distribution centered at 288 K with a standard deviation
of 10 K and soil moisture as a very skewed distribution which takes only positive values and is small
most of the time.

and analogously

g = i (14)
dsm
Here (A, B) denotes the covariance between A and B.
This means that the o* and 5* values estimated on this data do not agree with the values from the
data creation process.
For high values, meaning 7}, SM;, >> C\ we can use the approximation

e—(TinSMin_CO) =~ 0. (15)

This leads to
Cy

1 4+ e~ (TinSMin—Co)

T, =T, ~ Tin — Ch. (16)

and analogously
SM, = SM;, — Cs. (17)

Now, calculating the linear regression between the observations of T;,,, SM,,, and N BP where we
again use the assumption that the interaction is so much weaker than the variance in the variables that
we can use a single variate regression instead of a multivariate regression, we find

T <NBP 7E(NBP)77_‘7»W/ - ]E(T1n)>
"~ (Tin — E(Tin), Tin — E(Tin))
<a(Tr B E(Tr)) + 5(SMT B E(SMT)) + EvTT B E(Tr)>

= 18
(T, — E(T,). T, — B(T})) (1%)
<TT — ]E(Tr>v 1, — E(Tr)>
= =«
(T, — E(T), T, — E(T))
and analogously 3T = /3. Therefore, doing a linear regression will lend us the correct result.
B Parameters
For the empirical experiments, we use Cr = 10, Cspy = 1, Cy = 150, C; = 0.015.
More specifically, T;,, and SM;,, follow the distributions
Tin ~ N(288,100) and SM;, =2%s” with s~ U(0,1). (19)

A plot of the distributions is shown in Figure[2] We sample 100k points from these distributions and
calculate T;., SM,. and N BP following Section@ We run a linear regression on either the full data
or only the data points where the product of SM;,, and T}, is above the 50", 75" 90" or 95"
percentile.
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Figure 3: Example of a densly connected graph (on the left) and a simplification (in the middle) that
results from ignoring some connections. On the right, we see the graph during an extreme event on C'

and D. Here, more processes become negligible, for example, the loop between C and D, which
otherwise makes the inference of the effects very difficult.

C A Causal Perspective

In Earth’s system science, causal graphs are a useful tool for understanding complex relationships
between variables [5]. A causal graph is a graph in which variables are represented as nodes, and
directed edges between nodes indicate the direction of causal influence. In other words, an edge
A — B indicates that intervening on A has a "direct" effect on B, meaning that if we change A
while keeping all variables except A and B constant, B will also change. In these graphs, many
calculations are infeasible. To be able to make inference, we have to decide which connections are
significant and which connections can be neglected. The graph might, however, remain complex after
removing insignificant links and calculations might yield results that are strongly influenced by noise.
The threshold of what is negligible depends on the strength of an effect in addition to the level of
noise. During extreme events, we normally find that the influence of one (or a group of) variables is
very strong, which raises the threshold as the relative influence of other processes shrinks. This leads
to an even sparser graph, where some of the processes might be easier to extract.
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