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Background & theories
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e African Easterly Waves (AEWSs) are westward-propagating storms that grow from the instabilities in the African Easterly Jet
(grey curve). They are weaker than hurricanes.

e “85% of major hurricanes (Categories 3-5) start out as AEWs and then develop into hurricanes. But only 3% of AEWs develop
into hurricanes.

e Whether a given AEW will develop into a hurricane or not remains hard to predict.

So can machine learning (ML) approaches be used to differentiate developing and non-developing AEWs?



Classification problem, computer vision task

three key variables (RGB channels):

1.Column-integrated moist static energy (MSE): sum of sensible heat, geopotential and latent energy,
integrated from top to bottom

oh
2. Column-integrated meridional advection of MSE (Moisture-vortex instability theory): <va—>
Y
3. Potential vorticity at 850 hPa

Datasets

e The fifth reanalysis product from the European Centre for Medium-Range Weather Forecasts reanalysis data (ERA5). 1979-2018

0.25° X 0.25° horizontal resolution, 6-hour temporal resolution
e Storm tracking dataset: latitudes & longitudes of storm centers (developers and non-devs), storm types. (Cheng et al. 2019)
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e Snapshots of each variable, tracking along the wave center. Temporal composites are the average of snapshots from
the beginning of each wave's lifecycle till the end for non-devs and till becoming a hurricane for developers.

194 developers, 6055 weak non-devs, 320 strong non-devs (maximum PVgso > 4.1 X 107 571
Strong non-devs has comparable quantities with developers, the results are more robust.

80% as training set, 10% as validation set, 10% as testing set.

The training set is balanced using Synthetic Minority Oversampling Technique (SMOTE).



ML model architectures and comparison

e Customized CNN architecture
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e Pre-existing architectures:

Block 3
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Model name Function
ResNet resnetl8
Wide ResNet  wide resnet50 2
ResNeXt resnext50 32x4d
EfficientNet efficientnet_bO
VGG vgglo6
ViT vit b 16

Hyperparameters are optimized using Optuna, a Bayesian optimization framework
that automatically searches better hyperparameters based on a Tree-structured

Parzen Estimator (TPE). The vaIidationfﬂ—score (f = 0.75) is used as optimization
parameter. 100 trials for each model.

fc layer 3

e L oss functions:

Nname

Function

Binary Cross Entropy (BCE)
Weighted BCE

BCEWithLogitsLoss
pos_weights=

Strong non-dev/developer

e Optimizer: e Other hyperparameters:
name Function name range/value
Adaptive Moment Adam Random seed 42
Estimation (Adam) Weight decay rate 0.0001

Adam with weight decay AdamW Scheduler ReduceLROnPlateau
Stochastic Gradient SGD Learning rate [107°,1077]
Descent Batch size 16, 32, 64
e Results

Model Developer fbeta  Precision  Recall

Customized CNN 0.69 0.64 0.80

ResNet 0.70 0.68 0.72

Wide ResNet 0.77 0.82 0.69

ResNeXt 0.75 0.81 0.67

EfficientNet 0.77 0.92 0.59

VGG 0.75 0.83 0.64

ViT 0.71 0.71 0.64




Control experiments using AWS Autogluon multimodal function

Model: PyTorch Image Models (TIMM); Validation metric: Binary AUROC; Loss function: Cross Entropy

Combination Strong non-dev f1 developer f1 macro avg weighted avg
MSE_adv+MSE+PV 0.77 0.53 0.65 0.68
MSE_adv 0.76 0.33 0.55 0.60
MSE 0.77 0.00 0.38 0.48
PV 0.62 0.47 0.54 0.56
MSE_adv+MSE 0.82 0.54 0.68 0.71
MSE_adv+PV 0.77 0.49 0.63 0.66

MSE+PV 0.77 0.55 0.66 0.69




Conclusions

1. The performance of all models are close, with fﬂ-score (developer) ranging from 0.69 to 0.77. The precision has

a higher deviations, ranging from 0.64 to 0.92. And the recall ranges from 0.59 to 0.8.

2. filtering out weaker ones is important for a robust result.
3. Adding more variables does not always improve the results, even they are physically related. The variables

should be weighted according to their physical importance. A deep understanding of the physics is heeded.

Future plans

 Create more samples using NWP models or using data augmentation methods, e.g. adding noise to existing

samples.
» Study the time series instead of using composites.
 Better models (Nvidia Earth-2 Al stack) and adding more physical variables such as barotropical conversion.



