
Machine Learning Approaches on Identifying
Tropical Waves That Develop into Hurricanes

Haochang Luo1, Spencer A. Hill1,2

Mentors from CCAI mentorship program: Manmeet Singh3, Naveen Sudharsan3

 1Department of Earth and Atmospheric Sciences, City College of New York, New York, NY ; 2Lamont-Doherty Earth Observatory, Columbia

University, New York, NY; 3Department of Earth and Planetary Sciences, Jackson School of Geosciences, University of Texas, Austin, TX.

email: hluo@ccny.cuny.edu

mailto:hluo@ccny.cuny.edu

Background & theories

• African Easterly Waves (AEWs) are westward-propagating storms that grow from the instabilities in the African Easterly Jet
(grey curve). They are weaker than hurricanes.	

• ~85% of major hurricanes (Categories 3-5) start out as AEWs and then develop into hurricanes. But only 3% of AEWs develop
into hurricanes. 	

•Whether a given AEW will develop into a hurricane or not remains hard to predict.	

So can machine learning (ML) approaches be used to differentiate developing and non-developing AEWs?

Classification problem, computer vision task

three key variables (RGB channels):

1.Column-integrated moist static energy (MSE): sum of sensible heat, geopotential and latent energy,
integrated from top to bottom	

2. Column-integrated meridional advection of MSE (Moisture-vortex instability theory): 	

3. Potential vorticity at 850 hPa 	
⟨v

∂h
∂y ⟩

Datasets
• The fifth reanalysis product from the European Centre for Medium-Range Weather Forecasts reanalysis data (ERA5). 1979-2018

 horizontal resolution, 6-hour temporal resolution	
• Storm tracking dataset: latitudes & longitudes of storm centers (developers and non-devs), storm types. (Cheng et al. 2019)

0.25∘ × 0.25∘

• Snapshots of each variable, tracking along the wave center. Temporal composites are the average of snapshots from
the beginning of each wave's lifecycle till the end for non-devs and till becoming a hurricane for developers. 	

• 194 developers, 6055 weak non-devs, 320 strong non-devs (maximum)	
• Strong non-devs has comparable quantities with developers, the results are more robust. 	
• 80% as training set, 10% as validation set, 10% as testing set.	
• The training set is balanced using Synthetic Minority Oversampling Technique (SMOTE).

PV850 ≥ 4.1 × 10−5 s−1

Wave-centered composites:
⟨v

∂h
∂y ⟩ ⟨h⟩ PV850

PV850⟨h⟩⟨v
∂h
∂y ⟩

ML model architectures and comparison

Convolutional layer 1

Batch normalization 1

ReLu 1

Convolutional layer 2

Batch normalization 2

ReLu 2

Max pooling layer

Dropout layer

Block 1

Convolutional layer 1

Batch normalization 1

ReLu 1

Convolutional layer 2

Batch normalization 2

ReLu 2

Max pooling layer

Dropout layer

Block 2

Convolutional layer 1

Batch normalization 1

ReLu 1

Convolutional layer 2

Batch normalization 2

ReLu 2

Max pooling layer

Dropout layer

Block 3 fc layer 1

Batch normalization 1

ReLu 1

Dropout layer 1

fc layer 2

Batch normalization 2

ReLu 2

Dropout layer 2

fc layer 3

Block 4
• Customized CNN architecture

• Pre-existing architectures:
Model name Function

ResNet resnet18
Wide ResNet wide_resnet50_2
ResNeXt resnext50_32x4d

EfficientNet efficientnet_b0
VGG vgg16
ViT vit_b_16

• Loss functions:

name Function
Binary Cross Entropy (BCE) BCEWithLogitsLoss

Weighted BCE pos_weights=	
Strong non-dev/developer

• Optimizer:
name Function

Adaptive Moment
Estimation (Adam)

Adam

Adam with weight decay AdamW
Stochastic Gradient

Descent
SGD

• Other hyperparameters:
name range/value

Random seed 42
Weight decay rate 0.0001

Scheduler ReduceLROnPlateau
Learning rate
Batch size 16, 32, 64

[10−5,10−2]

Hyperparameters are optimized using Optuna, a Bayesian optimization framework
that automatically searches better hyperparameters based on a Tree-structured
Parzen Estimator (TPE). The validation -score () is used as optimization
parameter. 100 trials for each model.

fβ β = 0.75

Model Developer fbeta Precision Recall
Customized CNN 0.69 0.64 0.80

ResNet 0.70 0.68 0.72
Wide ResNet 0.77 0.82 0.69
ResNeXt 0.75 0.81 0.67

EfficientNet 0.77 0.92 0.59
VGG 0.75 0.83 0.64
ViT 0.71 0.71 0.64

• Results

Control experiments using AWS Autogluon multimodal function

Combination Strong non-dev f1 developer f1 macro avg weighted avg
MSE_adv+MSE+PV 0.77 0.53 0.65 0.68

MSE_adv 0.76 0.33 0.55 0.60
MSE 0.77 0.00 0.38 0.48
PV 0.62 0.47 0.54 0.56

MSE_adv+MSE 0.82 0.54 0.68 0.71
MSE_adv+PV 0.77 0.49 0.63 0.66
MSE+PV 0.77 0.55 0.66 0.69

Model: PyTorch Image Models (TIMM); Validation metric: Binary AUROC; Loss function: Cross Entropy

Conclusions

1. The performance of all models are close, with -score (developer) ranging from 0.69 to 0.77. The precision has
a higher deviations, ranging from 0.64 to 0.92. And the recall ranges from 0.59 to 0.8.

2. filtering out weaker ones is important for a robust result.

3. Adding more variables does not always improve the results, even they are physically related. The variables
should be weighted according to their physical importance. A deep understanding of the physics is needed.

fβ

Future plans
• Create more samples using NWP models or using data augmentation methods, e.g. adding noise to existing

samples.

• Study the time series instead of using composites.

• Better models (Nvidia Earth-2 AI stack) and adding more physical variables such as barotropical conversion.

