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• The tropical cyclones at the Atlantic basin caused immense socioeconomic losses in the 
American each year.	

• African Easterly Waves (AEWs) are westward-propagating storms that grow from the 
instabilities in the African Easterly Jet (grey curve). They are weaker than hurricanes.	

• ~85% of major hurricanes (Categories 3-5) start out as AEWs and then develop into 
hurricanes. But only 3% of AEWs develop into hurricanes. The potential vorticity (PV) at 
850 hPa of ~95% of non-devs is smaller than  throughout their lifetime 
(weak cases).	

• Whether a given AEW will develop into a hurricane or not remains hard to predict.	

So can machine learning (ML) approaches be used to differentiate developing and non-
developing AEWs? 

4.1 × 10−5 s−1

Example tracks of developing AEW (developer, red line); strong non-developing AEW(non-
dev, blue) track; weak non-dev track (black); Schematic of African Easterly Jet (AEJ, grey); 
the point when the AEW turns into a hurricane (red dot).

The prevailing theoretical frameworks for understanding AEW vortex growth (which is 
required for eventual development into a hurricane) identify at least three key terms:	
1. Column-integrated moist static energy (MSE): MSE is conserved when integrated 

throughout the whole column during moist adiabatic processes. It is closely related 
to precipitation. Latent energy ( ) released by water vapor during phase changing 
is a leading term in MSE and an important factor to the growth of AEWs:	

 	

                               	

2. Column-integrated meridional advection of MSE: 	

3. Potential vorticity at 850 hPa: PV combines rotation and stratification effects and is 
conserved following fluid motion in the absence of diabatic heating and friction. The 
850 hPa level captures the low-level circulation associated with AEWs while avoiding 
boundary layer complexities. 	
Are the variables that are significant in the physical theories also important to the ML 
models?	
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• Column-integrated MSE, column-integrated meridional MSE advection, and PV at 850 
hPa are calculated using the fifth reanalysis product from the European Centre for 
Medium-Range Weather Forecasts reanalysis data (ERA5)	

• ERA5:  horizontal resolution, 6-hourly temporal resolution, 1979-2018	
• Storm tracking dataset: latitudes & longitudes of storm center (developers and non-
devs), storm types, hurricane names (developers only), center PV at 850 hPa, 

 horizontal resolution, 6-hourly temporal resolution, 1979-2018, June-
October. (Cheng et al. 2019)	

• Storm center tracking method: Averaging mass-weighted curvature vorticity extrema at 
500, 600, 700 hPa and relative vorticity at 700, 850 hPa using ERA-interim reanalysis 
datasets. Smoothing over 300-km radius. Comparing with National Hurricane Center’s 
Atlantic Hurricane Database version 2 (HURDAT2) to label the storm types. 
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• Strong non-devs: lifetime maximum 	
• Samples: 194 developers,  6055 weak non-devs, 320 strong non-devs

PV850 ≥ 4.1 × 10−5 s−1

• Wave-centered composites: At each 6-hourly time step,  snapshots of each 
variable, tracking along the wave center. Temporal composites are the average of 
snapshots from the beginning of each wave's lifecycle till the end for non-devs and till 
becoming a hurricane for developers. 

16∘ × 16∘

Top: Composites of all strong 
non-devs throughout their 
lifetimes.	
Bottom: Composites of all 
developers before they become 
hurricanes.

80% of the data is used as training set, 10% as validation set, 10% as testing set.	
97% of the storms are non-devs, extremely unbalanced. The best f1-score of developers 
obtained using the full non-devs is 0.7 but not robust in 5-folding cross validation. 	
So it is crucial to split the non-devs into strong and weak cases and omit the weak ones. 	
Strong non-devs has comparable quantities with developers, the results are more robust. 	
The training set is balanced using Synthetic Minority Oversampling Technique (SMOTE) and 
standardized.
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• Customized CNN architecture:

Model name Function
ResNet resnet18

Wide ResNet wide_resnet50_2
ResNeXt resnext50_32x4d

EfficientNet efficientnet_b0
VGG vgg16
ViT vit_b_16

• Pre-existing architectures:

name Function
Binary Cross Entropy 

(BCE)
BCEWithLogitsLoss

Weighted BCE pos_weights=	
Strong non-dev/

developer

• Loss functions:

• Optimizer:

name Function
Adaptive Moment 
Estimation (Adam)

Adam

Adam with weight decay AdamW
Stochastic Gradient 

Descent
SGD

Hyperparameters are optimized using Optuna, a Bayesian optimization framework that 
automatically searches better hyperparameters based on a Tree-structured Parzen 
Estimator (TPE). The validation -score ( ) is used as optimization parameter. 
100 trials for each model.

fβ β = 0.75

• Other hyperparameters:
name range/value

Random seed 42
Weight decay rate 0.0001

Scheduler ReduceLROnPlateau
Learning rate
Batch size 16, 32, 64

[10−5,10−2]

1. The performance of all models are close, with  -score (developer) ranging 
from 0.69 to 0.77. The precision has a higher deviations, ranging from 0.64 to 
0.92. And the recall ranges from 0.59 to 0.8.


2.Wide ResNet achieves the highest -score, 0.77, EfficientNet has a 
comparable -score with ResNet but a higher precision, 0.92. Our customized 
CNN achieves the highest recall, 0.8. In such an extremely unbalanced 
classification problem, filtering out weaker ones is important for a robust result. 


3. Adding more features improves the results but they should be weighted 
according to their physical importance. A deep understanding of the physics is 
needed.


Future work:

• Create more samples using NWP models or using data augmentation methods, 

e.g. adding noise to existing samples.  

• Study the time series instead of using composites.

• Better models and adding more physical variables such as barotropical 

conversion.
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Model Developer fbeta Precision Recall
Customized CNN 0.69 0.64 0.80

ResNet 0.70 0.68 0.72
Wide ResNet 0.77 0.82 0.69
ResNeXt 0.75 0.81 0.67

EfficientNet 0.77 0.92 0.59
VGG 0.75 0.83 0.64
ViT 0.71 0.71 0.64

Model evaluation on testing sets 
show that the precision of 
developers  tends to be the lowest 
statistic, so developer  -score is 
used here as an metric with a 
inclination to precision ( ).
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6. ML model results

Using the customized CNN as a baseline, different combinations of physical variables are 
tested.

Combination Developer fbeta Precision Recall
MSE_adv+MSE+PV 0.69 0.64 0.80

MSE_adv 0.58 0.54 0.65
MSE 0.66 0.71 0.60
PV 0.65 0.65 0.65

MSE_adv+MSE 0.64 0.67 0.60
MSE_adv+PV 0.64 0.67 0.60
MSE+PV 0.66 0.63 0.75
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