Machine Learning Approaches on Identifying Tropical
Waves That Develop into Hurricanes

Haochang Luo
Department of Earth and Atmospheric Sciences
City College of New York
New York, NY, 10031
hluo@ccny.cuny.edu

Spencer A. Hill
Department of Earth and Atmospheric Sciences
City College of New York
New York, NY, 10031

Abstract

African Easterly Waves (AEWs) are synoptic-scale atmospheric disturbances that
serve as precursors to tropical cyclones (TCs) in the North Atlantic and North
Africa. As climate changes, TC activities are increasingly frequent, leading to
exponentially growing socio-economic losses. So understanding the physical
mechanisms governing the tropical cyclogenesis (TCG) of AEWSs remains a cru-
cial problem. Competing theoretical frameworks, including baroclinic instability,
barotropic instability, and moisture-vortex instability (MVI) have been proposed,
but their relative importance and temporal evolution during storm development
remain unclear. In this study, machine learning algorithms are used to empirically
analyze the governing mechanisms of AEW development based on 40 years of
reanalysis data (1979-2018). We develop a computer vision framework utilizing
convolutional neural networks (CNNs) and transformer architectures to identify
developing AEWs (DAEWs) from non-developing AEWs (NDAEWs) based on
wave-centered composites of key thermodynamic and dynamic variables for storm
development. The model results suggest that the MVI framework is a critical factor
for high classification accuracy in distinguishing developers from non-developers.

1 Introduction and motivation

African Easterly Waves (AEWSs) are westward-propagating atmospheric disturbances that originate
from instabilities along the African Easterly Jet over the Sahel region of North Africa [13]]. These
synoptic-scale waves represent one of the most important seedlings for tropical cyclone development
in the North Atlantic basin, with approximately 85% of major hurricanes (Categories 3-5) having
AEW origins [1]]. Despite their critical importance for seasonal hurricane forecasting and climate
prediction, the fundamental processes governing which AEWs develop into tropical cyclones remain
poorly understood [[11} [1]].

The transformation of an AEW into a tropical cyclone through tropical cyclogenesis (TCG) is a com-
plex, multi-scale process involving interactions between atmospheric dynamics and thermodynamics.
Only approximately 3% of AEWs successfully undergo TCG, making this a highly imbalanced
classification problem from both meteorological and machine learning perspectives. The rarity of
development, combined with the chaotic nature of the atmosphere and inherent predictability limits
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in atmospheric systems, has made it extremely challenging to establish robust statistical relationships
between environmental conditions and development outcomes.

1.1 Theoretical Frameworks

Several competing theoretical frameworks have been proposed to explain AEW development and
critical to TCG:

The baroclinic instability depicts the conversion of potential energy associated with horizontal
temperature gradients into kinetic energy of the disturbance [11]. The energy source for wave
amplification is the meridional temperature gradients created by land-sea contrasts [[11]].

The barotropic instability states that the horizontal wind shear, particularly the strong easterly jet
structure over West Africa is the energy source [[L1, [13l]. The curvature and shear of the African
Easterly Jet provide the necessary conditions for barotropic wave growth, with studies showing this
process dominates AEW initiation and early development phases [12].

The moisture-vortex instability (MVI) was recently proposed by Adames and Ming (2018)[14]. This
framework emphasizes the role of latent heat release and moisture advection in the vortex growth
[14]. The theory suggests that the meridional advection of moisture toward the wave center creates a
positive feedback loop: increased moisture leads to enhanced latent heat release, which strengthens
the vortex through diabatic heating and vortex stretching. Recent observational studies have provided
empirical support for this mechanism in distinguishing developing from non-developing AEWs [[7].

While each mechanism has theoretical support and has been observed in case studies, their relative
importance and temporal evolution during the AEW lifecycle remain unclear. Traditional statistical
approaches have struggled to disentangle these competing effects due to the nonlinear interactions
between variables.

1.2 Machine Learning Approach

Recent advances in machine learning, particularly in computer vision and explainable Al, offer new
opportunities to address this long-standing problem. By treating atmospheric fields as images and
applying deep learning techniques, we can potentially derive complex nonlinear relationships that are
neglected in traditional statistical models [9]. Recent studies have demonstrated the effectiveness of
machine learning approaches for tropical cyclogenesis prediction, with neural networks and ensemble
methods showing improved skill over traditional statistical approaches [9].

In our study, we feed computer vision models with wave-centered horizontal composites that represent
the critical growth mechanisms of AEWs. Those physically meaningful variables derived from
established theoretical frameworks will provide us with insights into the underlying physics.

The primary goals of this study are to: 1. Develop a robust machine learning framework for
categorizing developing vs. non-developing AEWs. 2. Identify and examine which theoretical
mechanisms are most predictive of development at different lifecycle stages. This paper will focus on
the work in the first stage.

2 Data and Preprocessing

2.1 Datasets

Two major datasets are used in this study: storm track dataset and the fifth reanalysis product from
the European Centre for Medium-Range Weather Forecasts reanalysis data (ERAS, [5]).

The AEW tracking dataset from 1979-2018 was derived using an alternative algorithm of Brammer
and Thorncroft (2015) [2} 4]]. This dataset identifies AEWSs by tracking vorticity maxima over North
Africa and the North Atlantic basin, providing 6-hourly central positions (latitude/longitude) and
intensity metrics for each disturbance. The dataset includes lifecycle information, documenting
transitions from tropical waves to tropical depressions (TD), tropical storms (TS), and hurricanes
when applicable. The total dataset contains approximately 6,570 individual AEW cases, with roughly
3% classified as developers (DAEWs) that eventually undergo tropical cyclogenesis and 97%non-
developers (NDAEWs).



ERAS provides global atmospheric conditions at 0.25° x 0.25° horizontal resolution with 6-hourly
temporal resolution, matching the storm tracking dataset. The high spatial and temporal resolution of
ERAS is essential for capturing the mesoscale features associated with AEW development [§].

2.2 Physical Variables

Based on the theoretical frameworks outlined above, the following key variables that capture the
essential physics of AEW development are selected as input channels: 1. The column-integrated
moist static energy (MSE) is a thermodynamically conserved quantity that combines the effects of
temperature, moisture, and geopotential height:

MSE = C,T + Lyq + ® )

where C,, = 1004 J - (K - kg)~" is the air heat capacity at constant pressure; 7 is temperature;
L, = 2.5 x 10°J - kg~ is the specific latent heat through phase changing; ¢ is specific humidity
and @ is geopotential. The column-integrated MSE is calculated as:
1 Ps
(MSE) = — MSE dp (2)
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where g = 9.8 m - s71 is the gravitational acceleration; p, is the surface pressure, p; is the pressure
at the top of the atmosphere.

2. Following the MVI framework, we calculate the meridional component of MSE advection:
<v%> where v is the meridional wind component and y is the meridional coordinate. This

variable captures the moisture transport toward the wave center, which is hypothesized to be critical
for development.

3. Potential vorticity (PV) combines rotation and stratification effects and is conserved following
fluid motion in the absence of diabatic heating and friction. The 850 hPa level captures the low-level
circulation associated with AEWs while avoiding boundary layer complexities.

Other variables, such as barotropic conversion, will be incorporated and compared with MVI in the
next stages of this work.

2.3 Wave-centered composites

To create a standardized comparison framework, we construct wave-centered composites that follow
each AEW, throughout its lifecycle. For each 6-hourly time step, we extract 16° x 16° snapshots of
each variable, centered on the tracked wave position.

Temporal composites are created by averaging snapshots from the beginning of each wave’s lifecycle.
For non-developers (NDAEWs), they are averaged over the entire observed lifecycle. For developers
(DAEWs), they are averaged from birth to the moment of TCG.

2.4 Data Preprocessing

The dataset is split to avoid data leakage: 60% of the cases are used for training models, 20% are
used for validation and 20% are used for testing. All variables are standardized by subtracting the
mean and dividing by the standard deviation of the training set.

Since the data is extremely unbalanced, the Synthetic Minority Oversampling Technique (SMOTE)
was implemented as it generates synthetic examples of the minority class (DAEWs) by interpolating
between existing minority class instances in feature space [3].

3 Model Architecture and Configuration

3.1 Customized Architecture

Our primary model is based on the Convolutional Neural Network (CNN) architecture. The model
treats the wave-centered composites as multi-channel images, with each physical variable representing
a separate channel. The model accepts inputs of shape 3 x 64 x 64, representing the 16° x 16° spatial



domain with three channels corresponding to column-integrated MSE, meridional MSE advection,
and 850 hPa potential vorticity. The architecture employs multiple convolutional blocks, each
containing two 2D convolutional layers, batch normalization, ReLU activation function, max-pooling
layers and dropout layers. The width of convolutional layers increases with depth from 32 to 64 and
128. An adaptive average pooling layer is applied after the three blocks. Fully connected layers are
added to filter the results into a single probability. A final dense layer with sigmoid activation turns
the probability to a binary classification output.

3.2 Pre-defined Architectures

Other than our customized CNN model, we compared the results from re-defined models includ-
ing: ResNet(resnetl8), wide ResNet (wide_resnet50_2), ResNext(resnext50_32x4d), Efficient-
Net(efficientnet_b0) and VGG(vggl6). Their heads are modified so they can be connected to
the input channels.

3.3 Hyperparameter Optimization

Model hyperparameters are optimized using Optuna, a Bayesian optimization framework. The
algorithm will automatically search better hyperparameters based on a Tree-structured Parzen Es-
timator (TPE). The optimization process tunes: learning rate (1x107° to 1x1072), weight decay
rate (1x1076 to 1x1072), batch size (16, 32, 64), optimizer (Adam, SGD, AdamW), loss function
(Binary Cross Entropy (BCE), Focal loss), and dropout rate (0.1-0.7). The random seed is 42. The
optimization seeks the highest F1-score on the validation set. Each of the models goes through 100
trials with an automatic median pruner. Each trial runs 50 epochs.

4 Preliminary Results and Ongoing Work

The models are tuned to retain the best F1-score of DAEWSs in the validation set. The results are
shown in Table.

model name learning rate  batch size optimizer  loss function  weight decay rate  F1-score
Customized CNN  0.292x10~% 64 AdamW BCE 0.903x10~3 0.700
ResNet 0.250x1073 16 SGD BCE 0.696x107° 0.643
Wide ResNet 0.320x10~* 32 Adam Focal 0.123x107° 0.585
ResNeXt 0.279x1073 64 AdamW Focal 0.757x1072 0.628
VGG 0.102x10~% 16 Adam Focal 0.319x10~* 0.625
EfficientNet 0.620x 1072 32 Adam  Weighted BCE 0.354x1072 0.587

Table 1: Hyperparameters and the best F1-score

Among all architectures, the customized CNN model shows a relatively good F1-score compared to
the other pre-defined models. However, its performance exhibits substantial variability across the
five cross-validation folds. This variance is primarily due to the extreme class imbalance between
developing and non-developing AEWs, even after applying SMOTE oversampling. Following
previous work [7], we mitigate this issue by further splitting the non-developing AEWs based on their
lifetime-maximum 850 hPa potential vorticity. Their intensity distribution density is estimated using a
Gaussian kernel. The 95th percentile of the distribution is adopted as the threshold (~ 4.1 x 107> s~ 1)
for strong and weak cases. The analysis proceeds with the 320 strong non-developing AEWs. Because
the developing AEW precision tends to be low in trials, we use the Fg-score with 5 = 0.75, an
inclination to precision, as the metric. We also include a Vision Transformer (ViT) for comparison.

The performance for all architectures is listed in Table. [2] Hyperparameters are optimized using
Optuna for each architecture. Wide ResNet and EfficientNet achieve the best Fg-scores, with
EfficientNet yielding the highest precision and the customized CNN obtaining the highest recall.
Opverall, the F-scores range between 0.69 to 0.77.

Using the customized CNN as a baseline, we evaluate different combinations of the three predictor
variables (Table. [3), optimizing hyperparameters separately for each case. The full three-variable
combination yields the highest F3-score, and performance generally increases with the number
of input channels. This suggests that for a given architecture, incorporating additional physically
relevant features improves predictive skill.



Model F-score  Precision Recall

Customized CNN 0.69 0.64 0.80
ResNet 0.70 0.68 0.72
Wide ResNet 0.77 0.82 0.69
ResNeXt 0.75 0.81 0.67
VGG 0.75 0.83 0.64
EfficientNet 0.77 0.92 0.59
ViT 0.71 0.71 0.64

Table 2: Architecture comparison

Combination Fg-score  Precision Recall
MSE_adv+MSE+PV 0.69 0.64 0.80
MSE_adv 0.58 0.54 0.65
MSE 0.66 0.71 0.60
PV 0.65 0.65 0.65
MSE_adv+MSE 0.64 0.67 0.60
MSE_adv+PV 0.64 0.67 0.60
MSE+PV 0.66 0.63 0.75

Table 3: Combinations of variables based on customized CNN

To evaluate model behavior under a fixed hyperparameter configuration, we use the AutoML frame-
work AutoGluon [10]. The experiments employ the default multimodal configuration: a Swin
Transformer (swin_base_patch4_window7_224; [6]) pretrained on ImageNet-1k at 224 x 224 res-
olution, AdamW optimization, ROC-AUC validation metric, layer-wise cosine-decayed learning
rate initialized at 0.0001, weight decay of 0.001, and macro F1-score as evaluation metric. Table
M) shows that the combination of MSE advection and column MSE yields the highest scores across
all four metrics. Unlike the CNN experiments, these results highlight that when architecture and
hyperparameters are fixed, adding more variables does not necessarily improve performance; instead,
predictors must be selected and weighted according to their physical relevance.

Combination Strong non-developing F1 ~ developing FI  macro avg F1 ~ weighted avg F1
MSE_adv+MSE+PV 0.77 0.53 0.65 0.68
MSE_adv 0.76 0.33 0.55 0.60
MSE 0.77 0.00 0.38 0.48
PV 0.62 0.47 0.54 0.56
MSE_adv+MSE 0.82 0.54 0.68 0.71
MSE_adv+PV 0.77 0.49 0.63 0.66
MSE+PV 0.77 0.55 0.66 0.69

Table 4: Combinations of variables using Autogluon default setup

In the ongoing and future work, we will enable the hyperparameter optimization pipeline within
AutoGluon and explore additional model architectures with larger parameter counts. Alternative
resampling methods will also be evaluated to address the extreme class imbalance in AEW develop-
ment. Additional dynamical and thermodynamical variables, such as barotropic conversion terms,
will be incorporated to systematically assess competing physical theories of AEW development.
Given the limited number of samples, we plan to employ data augmentation methods and potentially
generate additional storm cases using numerical weather prediction models. We will apply layer-wise
relevance propagation (LRP) to understand which physical structures contribute most strongly to de-
velopment predictions. The current wave-centered composites neglect potentially important temporal
information. In future work we will analyze the full time evolution of AEWs to assess when moist
vortex instability—like conditions emerge and how these temporal signals influence predictability.
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