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SamudrACE: Al emulator of coupled global climate models

Why coupled emulator? We need it to predict coupled
phenomena such as El Nifio and to model long-term
response to CO,

3D ocean and seaice:
e  5-day steps
e 19vertical levels
e  Original 0.25° horizontal resolution regridded to 1°

3D atmosphere and land surface:
e  6-hour steps
e  B8vertical levels
e 1°horizontal resolution

SamudrACE is 7350x less energy intensive than a traditional
GCM simulation, and with one NVIDIA H100 GPU generates an
1500 year simulation in 24 hours (~100x faster)
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Surface temperature and seaice
concentration from a 40-year rollout



Prior work: Samudra

Samudra is a 3D global ocean emulator:

e Forced by atmosphere surface fluxes
e Fullocean depth

e b5-daily time step

e Stable, accurate, and no drift for long rollout
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https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2024GL114318

This work: SamudrACE

e  SamudrACE is built on top of ACE and Samudra with some notable

changes: ' iy I
4 ACE |
o Addseaice concentration and thickness as prognostic variables in ! I
Samudra l |
l
o Useindividual surface fluxes predicted from ACE as boundary forcing : s - _I
for Samudra

e  Trained on 200-year of preindustrial control coupled simulation from GFDLs
Climate Model version 4 (piCM4)

o 155 years for training, 5 years for validation, and 40 years for testing

Depth 5 km -

(Duncan et al. 2025)
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Coupled training setup: 2 stages

Pretraining in uncoupled mode then coupled fine-tuning

a) Uncoupled atmosphere b) Uncoupled ocean c) Coupled
Atmosphere, 6-hr Atmosphere, 6-hr
snapshot surface snapshot surface
temperature and | | temperature and
time avg fluxes time avg fluxes
! Atmosphere, Atmosphere,
i 5-day avg 5-day avg
i surface fluxes surface fluxes
Ocean, 5-day i Ocean, 5-day Ocean, 5-day
updates of SST/ i updates avg states
Sea ice 1 i 1 1 1 1
t t +5 days t t +5 days t t +5 days
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Stable and accurate long term climate skills

a) RMSE: 0.30 mm/day

Time mean bias

b) RMSE: 0.33 K

c) RMSE: 0.01

d) RMSE: 0.48 psu
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Precipitation biases are concentrated in the tropics and surface temperature biases are largest in areas of seaice
and topographic features
Similar time mean biases to the uncoupled component emulators



SamudrACE predicts accurate sea ice climatology
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Coupled fine training strategies impact ENSO response
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Summary

SamudrACE
e maintains low climate biases comparable to its uncoupled component models

e generatesrealistic ENSO variability including the associated teleconnections to global precipitation
patterns

e generally underestimates low-frequency variability on time scales longer than 4 years

It is easier and 100x faster to run than the reference model!

e Ongoing work include training SamudrACE to simulate climate change scenarios

Open source code, data and model checkpoints: github.com/ai2cm/ace
huggingface.co/allenai/SamudrACE-CM4-piControl

SamudrACE paper: Duncan et al. 2025
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https://github.com/ai2cm/ace
https://huggingface.co/allenai/SamudrACE-CM4-piControl
https://arxiv.org/abs/2509.12490

Scan to explore the model and paper!

https://huggingface.co/allenai/SamudrACE-CM4-piControl
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Thank you!

10


https://huggingface.co/allenai/SamudrACE-CM4-piControl

