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e QOurlong-term goallls to build a global climate emul_ator Capablg of running the Coupled 3D prognostic: T, Q, U, V
Model Intercomparison Program (CMIP) DECK [1] simulation suite 2D proanostic: Surface temperature of land and sea ice,
e Use coupled emulator to learn and generate realistic climate trends including physical 22 lovels TMP2m , Q2m, U2m, V2m
. . o . o
phenomena that emerge through the interaction of atmosphere and ocean (e.g, ENSO) atmosphere | ACEZ 1] | 6hours 1 coarsened to g | 22 diagnostic: Upward/downward SW/LW flux at surface,
evels upward SW/LW flux at TOA, precipitation, advective tendency
20x 6-hour ACE2 steps Figure 1: A Sing|e forward Step Of Of TWP, Ia'Fent &senSible heat ﬁUX, ZSOO, T850, meridional
SamudrACE. ACE2 is forced by 5-day & zonal wind stress
average SST and sea ice and steps
> e I e forward 6 hours at a time for 5 days. , , —
] \ Wind stress, precipitation, and 1140 5D prognostic: Sea water potential temperature, salinity, zonal
B - surface fluxes are averaged and . Samudra /5 levels & mer|d|ona|.ve|o<:|ty |
SPTEEECECE *g input as forcings to Samudra, which Ocean & seaice 2] > days coatr;eon ed coarsenedto 19 | 2D prognostic: Sea surface temperature, sea surface height,
takes a single 5-day step forward. levels sea ice fraction, sea ice thickness

1x 5-d d . . . . . . .
* ay samudra Table 1: Atmosphere, ocean, and sea ice variables and their temporal, horizontal, and vertical resolutions as emulated by ACE2 and Samudra in

s Prediction at uncoupled and coupled modes. Variables in bold act as surface boundary conditions.
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e 200-year pre-industrial control simulation from GFDL's Climate Model v4 (piCM4)

million km?

e Use the first 155 years of output for training, the next 5 years for validation, and hold out
the remaining 40 years of data for testing - cwa
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e Pretrain the atmosphere and ocean separately following ACE2 and Samudra’s training T 2 4 s 8 0 1

prOtOCO|S then do COUp|ed ﬂne—tuning sea ice fraction [-] sea ice fraction [-] month sea ice fraction [-] sea ice fraction [-]

Figure 3: Monthly mean over the 40-year held-out period of (a) Northern and (b) Southern Hemisphere sea ice extent. Shading denotes the interannual standard

© Include seaice as prognostic variables in samudra deviation over 40 years. Panel c-d) shows the time mean sea ice fraction over the same time period for the CM4 target, SamudrACE, and its bias.
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e The emulator has good long term climate skill - precipitation biases are concentrated in AR 2 1
the tropics and surface temperature biases are largest in areas of sea ice and E FT RS1 5 1071
topographic features ERNN. N il ol
e Maintains good sea ice climatology but underestimates interannual variability in the SH U i e i . . | | . .
0 5 10 15 20 25 30 35 0 2 4 6 8 0
® D|ﬁ:erent COUpled fiﬂe-tuning Strategies can |mpaCt ENSO response, SamUdrACE |OseS Time [years] Period [years] Surface precipitation response to Nifio 3.4 [mm/day / K]
low-frequency power beyond periods of 4 years Figure 4: (left) Time series of monthly Nifio3.4 index with coupled fine-tuning where only ocean MSE contribute to training losses (FTO) or both ocean and atmosphere
Time mean bias MSE are considered (FT) for 4 different random seed each and their corresponding temporal power spectra. (right) Maps of surface precipitation response to Nifo3.4
a) RMSE: 0.30 mm/day c) RMSE: 0.01 index for FTORST.
: - N Summary

e SamudrACE maintains low climate biases comparable to its uncoupled component models while running 100x faster and
/350x less energy intensive than the reference numerical model

e SamudrACE generates realistic ENSO variability including the associated teleconnections to global precipitation patterns

* I I;— -T— : P q; : ? -L : ;_ . . . -
=2 -1 o0 1 2 -2 -1 0 1 2 -01 00 0l -1 o 1 e SamudrACE generally underestimates low-frequency variability on time scales longer than 4 years
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