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Overview
● Our long-term goal is to build a global climate emulator capable of running the Coupled 

Model Intercomparison Program (CMIP) DECK [1] simulation suite
● Use coupled emulator to learn and generate realistic climate trends including physical 

phenomena that emerge through the interaction of atmosphere and ocean (e.g, ENSO)

Realm Emulator Temporal 
resolution

Horizontal 
resolution Vertical resolution Variables

Atmosphere ACE2 [1] 6 hours 1° 33 levels 
coarsened to 8 

levels

3D prognostic: T, Q, U, V
2D prognostic: Surface temperature of land and sea ice, 
TMP2m , Q2m, U2m, V2m
2D diagnostic: Upward/downward SW/LW flux at surface, 
upward SW/LW flux at TOA, precipitation, advective tendency 
of TWP, latent & sensible heat flux, Z500, T850, meridional 
& zonal wind stress

Ocean & sea ice Samudra 
[2] 5 days

1/4° 
coarsened 

to 1°

75 levels 
coarsened to 19 

levels

3D prognostic: Sea water potential temperature, salinity, zonal 
& meridional velocity
2D prognostic: Sea surface temperature, sea surface height, 
sea ice fraction, sea ice thickness

Table 1: Atmosphere, ocean, and sea ice variables and their temporal, horizontal, and vertical resolutions as emulated by ACE2 and Samudra in 
uncoupled and coupled modes. Variables in bold act as surface boundary conditions.
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Figure 1: A single forward step of 
SamudrACE. ACE2 is forced by 5-day 
average SST and sea ice and steps 
forward 6 hours at a time for 5 days. 
Wind stress, precipitation, and 
surface fluxes are averaged and 
input as forcings to Samudra, which 
takes a single 5-day step forward.

Data and Methods
● 200-year pre-industrial control simulation from GFDL’s Climate Model v4 (piCM4)
● Use the first 155 years of output for training, the next 5 years for validation, and hold out 

the remaining 40 years of data for testing
● Pretrain the atmosphere and ocean separately following ACE2 and Samudra’s training 

protocols then do coupled fine-tuning
○ Include sea ice as prognostic variables in Samudra
○ Ocean is forced by  5-day average of atmosphere surface fluxes

Results

Figure 2: Time-mean bias of precipitation, surface temperature, sea ice fraction, and sea-surface salinity 
over the 40-year held-out inference period between SamudrACE and the piCM4 reference model.

Summary
● SamudrACE maintains low climate biases comparable to its uncoupled component models while running 100x faster and 

7350x less energy intensive than the reference numerical model
● SamudrACE generates realistic ENSO variability including the associated teleconnections to global precipitation paerns
● SamudrACE generally underestimates low-frequency variability on time scales longer than 4 years

● The emulator has good long term climate skill – precipitation biases are concentrated in 
the tropics and surface temperature biases are largest in areas of sea ice and 
topographic features

● Maintains good sea ice climatology but underestimates interannual variability in the SH
● Dierent coupled fine-tuning strategies can impact ENSO response, SamudrACE loses 

low-frequency power beyond periods of 4 years 

Figure 3: Monthly mean over the 40-year held-out period of (a) Northern and  (b) Southern Hemisphere sea ice extent. Shading denotes the interannual standard 
deviation over 40 years. Panel c-d) shows the time mean sea ice fraction over the same time period for the CM4 target, SamudrACE, and its bias.

Figure 4: (left) Time series of monthly Niño3.4 index with coupled fine-tuning where only ocean MSE contribute to training losses (FTO) or both ocean and atmosphere 
MSE are considered (FT) for 4 dierent random seed each and their corresponding temporal power spectra. (right) Maps of surface precipitation response to Niño3.4 
index for FTO RS1.
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