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Motivation Problem Statement

- Urbanization: More than 70% of the world's -
population will live in cities by 20501

- Urban heat island (UHI) effect: Cities are on
average up to 5°C warmer than surrounding
regions?

- Consequences: Increased energy consumption,
health risks, and environmental pollution3

Cf. Piracha, Chaudhary 2022, p. 1

Cf. Santamouri et al. 2013, p. 7 et seqq.

Cf. Tan, Jianguo et al. 2010, S. 80; Santamouris et al. 2015, p. 1 et seqq.
Cf. Varentsov, Krinitskiy, Stepanenko 2023, p. 16

Cf. Ghorbany et al. 2024, p. 18

Cf. Farahani et al. 2020, p. 1 et seqq.

Cf. Mai, Huang, et al. 2023, p. 2 et seqq.
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Challenges: Physics-based models require
extensive iInput data, specialist knowledge, and
high computing power, and are often designed tor
data-rich regions?

Classic ML/DL methods limited by high demand for
labeled data and low transferability®

Solution: Geospatial Foundation Models (GFMs)
offer improved generalizability and transterability
due to training on large geospatial datasets’



- During fine-tuning, the pre-trained encoder is adaptec
using small amounts of annotated data (e.g., LST labels)

- Through task-specific decoder heads (in this case, a
regression head), the model generates high-resolution
temperature maps®

- These maps are used for Urban Heat Island (UHI) analysis
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Fig. 2: Overview of the Prithvi foundation model architecture and its fine-tuning pipeline.

8. Cf. Bhamjee, Debary, et al. 2024, p. 1694 et seqq.
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Study Regions

- Thirteen European cities used to test model
generalization beyond training data >

- Twelve cities (red dots) analyzed for internal and
spillover cooling across diverse hydro-climatic
settings

- Brasov (blue) used as an unseen evaluation city
- Prague selected tor the in-painting intervention step

- Workflow adaptable to any urban area, showing the
flexibility of geospatial foundation models

Fig 1: Study regions across twelve European cities (red dots)
representing varied urban and climatic conditions. Brasov (blue dot)
served as the extrapolation site for model testing.
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EXperiments
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Fig 3: Heat source-sink experiment
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- Dense city cores exhibit an average UHI intensity of .|

+3.3 °C, reflecting clear thermal contrasts shaped f ‘-
by vegetation distribution

Distance from Urban Center (km)

Fig 4. Urban gradient experiment
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EXperiments

- Both models accurately capture the internal coolmg
gradient, with model V2 showing clear
Improvements in reproducing spillover cooling

patterns
Fig 5: Internal cooling gradient Fig 6: Spillover cooling gradient
RCP 2.6 RCP 4.5 RCP 8.5
- Climate projections reveal a strong intensitication - |
ot UHIs under RCP 4.5 and 8.5 scenarios toward
2100 “af”‘w
- Model V2 robustly extrapolates to unseen 2050 s
extremes, with an MAE ot 1.74 °C on the upper AP d i '
10% of temperatures, reinforcing reliability for ; ; )

2100

future simulations

Fig 7. Projected UHI extent under
RCP 2.6, 4.5, and 8.5 for 2030,
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Experiments

- The greening intervention increases NDVI and
lowers local LST by several degrees, contirming

vegetation-driven cooling

- Cooling reaches =6 °C inside the park and extends
up to —3°C within the first 50 meters
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Fig 8: Comparison of inpainting results against ground truth
data in Prague.
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Fig 9: Cooling phenomena of the proposed intervention area.
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Results

- Cooling Analysis: Benchmarked V1 and V2
performance in capturing park and spillover
cooling. V2 outpertormed V1 in every metric

- Extrapolation Test: Compared V1 and V2 across

paseline, random, and high-heat setups. V2
performed best during all metrics
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A | V2
Experiment MAE RMSE MBE MAE RMSE MBE

Internal Cooling  0.240 0.257 +0.240 0.231 0.249 +0.231
Spillover Cooling 0.302 0.339 +0.302 0.199 0.243 +0.199

Table 1: Performance comparison of model variants for the two key cooling
experiments. The best value per metric between V1 and V2 is underlined.

V1 V2
Model Variants MAE MSE RMSE MAE MSE RMSE
Baseline 1.95 7.25 2.69 2.81 12.94 3.60
Random Data Split 1.80 6.26 2.50 1.77  5.80 241

High-Heat Scenario (90th) 1.96  7.05 2.66 1.74  6.37 2.52

Table 2: Performance comparison of model variants using MAE,
MSE, and RMSE. Bold indicates the best value and underline
indicates the second-best.
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