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Motivation
- Urbanization: More than 70% of the world's

population will live in cities by 20501

- Urban heat island (UHI) effect: Cities are on 
average up to 5°C warmer than surrounding 
regions2

- Consequences: Increased energy consumption, 
health risks, and environmental pollution3

Problem Statement
- Challenges: Physics-based models require 

extensive input data, specialist knowledge, and 
high computing power, and are often designed for 
data-rich regions5

- Classic ML/DL methods limited by high demand for 
labeled data and low transferability6

- Solution: Geospatial Foundation Models (GFMs) 
offer improved generalizability and transferability 
due to training on large geospatial datasets7

1. Cf. Piracha, Chaudhary 2022, p. 1
2. Cf. Santamouri et al. 2013, p. 7 et seqq.
3. Cf. Tan, Jianguo et al. 2010, S. 80; Santamouris et al. 2015, p. 1 et seqq.
4. Cf. Varentsov, Krinitskiy, Stepanenko 2023, p. 16
5. Cf. Ghorbany et al. 2024, p. 18
6. Cf. Farahani et al. 2020, p. 1 et seqq.
7. Cf. Mai, Huang, et al. 2023, p. 2 et seqq.
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Methodology
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Fig. 2: Overview of the Prithvi foundation model architecture and its fine-tuning pipeline.
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- During fine-tuning, the pre-trained encoder is adapted 

using small amounts of annotated data (e.g., LST labels)  

- Through task-specific decoder heads (in this case, a 

regression head), the model generates high-resolution 

temperature maps8

- These maps are used for Urban Heat Island (UHI) analysis

8. Cf. Bhamjee, Debary, et al. 2024, p. 1694 et seqq.



Study Regions

Fig 1: Study regions across twelve European cities (red dots) 
representing varied urban and climatic conditions. Brașov (blue dot) 

served as the extrapolation site for model testing.
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- Thirteen European cities used to test model 
generalization beyond training data

- Twelve cities (red dots) analyzed for internal and 
spillover cooling across diverse hydro-climatic 
settings

- Brașov (blue) used as an unseen evaluation city

- Prague selected for the in-painting intervention step

- Workflow adaptable to any urban area, showing the 
flexibility of geospatial foundation models



Experiments

- Tree-covered areas act as natural heat sinks, while  

heat sources almost only consist out of built area.

- Dense city cores exhibit an average UHI intensity of 

+3.3 ℃, reflecting clear thermal contrasts shaped 

by vegetation distribution

Fig 3:  Heat source-sink experiment

Fig 4: Urban gradient experiment
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Experiments

- Both models accurately capture the internal cooling
gradient, with model V2 showing clear
improvements in reproducing spillover cooling
patterns

- Climate projections reveal a strong intensification

of UHIs under RCP 4.5 and 8.5 scenarios toward

2100

- Model V2 robustly extrapolates to unseen

extremes, with an MAE of 1.74℃ on the upper

10% of temperatures, reinforcing reliability for

future simulations

Fig 5: Internal cooling gradient Fig 6:  Spillover cooling gradient

Fig 7: Projected UHI extent under 
RCP 2.6, 4.5, and 8.5 for 2030, 

2050, and 2100 in Brasov. NeurIPS 2025 Workshop: Tackling Climate Change with Machine Learning 6



Experiments

- The greening intervention increases NDVI and 

lowers local LST by several degrees, confirming

vegetation-driven cooling

- Cooling reaches −6 ℃ inside the park and extends

up to −3℃ within the first 50 meters

Fig 8: Comparison of inpainting results against ground truth 
data in Prague.

Fig 9: Cooling phenomena of the proposed intervention area. 
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Results

- Cooling Analysis: Benchmarked V1 and V2 
performance in capturing park and spillover 
cooling. V2 outperformed V1 in every metric

- Extrapolation Test: Compared V1 and V2 across 
baseline, random, and high-heat setups. V2 
performed best during all metrics

Table 1: Performance comparison of model variants for the two key cooling 
experiments. The best value per metric between V1 and V2 is underlined.

Table 2: Performance comparison of model variants using MAE, 
MSE, and RMSE. Bold indicates the best value and underline 

indicates the second-best.
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