Key Challenges for Urban Heat Island
Modelling
and Forecasting

> Heterogeneous data: Integrating satellite
and meteorological data across scales is
complex?t

> Disaggregated observations: Independent
data sources cause spatial and temporal
gaps?

»  Sparse monitoring: Limited ground truth
restricts model validation and fine-scale
forecasting?

»  Computational demands: Physical models
are costly, and deep learning models need
large datasets and lack cross-domain
generalizability®

Goal:

Therefore, this study applies a geospatial foundation
model to detect and simulate urban heat islands,
quantify spillover cooling effects, and assess how
GFMs perform in settings where traditional
approaches often face limitations.

Study Design and Model Architecture

>  Experiment 1 - Empirical Baseline: Combine >
LULC and LST data from 2017-2025 to quantify
green space cooling and validate GFM outputs
against ground truth across 12 European cities

»  Experiment 2 - Future Extrapolation: Assess
the model’s capacity to generalize to unseen
cities, demonstrated for Brasov (Romania) using
EURO-CORDEX climate projections to model
future heat hotspots

>  Experiment 3 — Urban Greening Simulation:
Apply guided inpainting to replace built-up zones
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Fig. 2: Overview of the Prithvi foundation model architecture and its fine-tuning pipeline.
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Fig 1: Study regions across twelve European cities (red dots)
representing varied urban and climatic conditions. Brasov (blue
dot) served as the extrapolation site for model testing.

> Study Regions: Thirteen European

cities were selected to test the
GFM'’s ability to generalize across a
range of diverse urban, geographic,
and climatic contexts, capturing
variations in land use and
environmental conditions, including
Brasov (unseen) and Prague
(inpainting case).

Fig 3: Heat source-sink experiment

Ground truth internal and spillover cooling patterns

» Dense city cores exhibit an average UHI intensity of +3.3 °C, reflecting clear thermal contrasts
shaped by vegetation distribution

» Parks act as cooling sinks, with internal cooling up to —2.6 °C and spillover effects reaching
—-3.5 °C close to parks

Fig 4: Urban gradient experiment

confirming vegetation-driven cooling
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Fig 7: Comparison of inpainting results against ground truth data in Prague.

Inpainting-Based Simulation of Urban Greening for Urban Heat Island Mitigation

»  The greening intervention increases NDVI and lowers local LST by several degrees,

»  Cooling reaches -6 °C inside the park and extends up to —0.5 °C within 150 m

» Model V2
robustly
extrapolates to

with an MAE of
1.74 °C on the
upper 10% of
temperatures,
reinforcing

Fig 8: Cooling phenomena of the proposed intervention area.

reliability for
future
simulations

Fig 5: Internal cooling gradient

unseen extremes,

Model Performance Evaluation and Future
Climate Forecasting

»  Both models accurately capture the internal
cooling gradient, with model V2 showing clear
Improvements in reproducing spillover cooling
patterns

Fig 6: Spillover cooling gradient

» Climate projections reveal a strong intensification of
UHIs under RCP 4.5 and 8.5 scenarios toward 2100
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Fig 9: Projected UHI extent under RCP 2.6, 4.5,
and 8.5 for 2030, 2050, and 2100 in Brasov.
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Results

V1

V2

Experiment MAE RMSE MBE MAE RMSE MBE

Internal Cooling  0.240 0.257 +0.240 0.231 0.249 +0.231

Spillover Cooling 0.302 0.339 +0302 0.199 0.243 +0.199

Table 1: Performance comparison of model variants for the two key cooling
experiments. The best value per metric between V1 and V2 is underlined.

High-Heat Scenario (90th) 1.96  7.05 2.66

V1 V2
Model Variants MAE MSE RMSE MAE MSE RMSE
Baseline 195 7.25 2.69 281 1294 3.60
Random Data Split 1.80 6.26 2.50 1.77  5.80 241

1.74 6.37 2.52

Table 2: Performance comparison of model variants using MAE, MSE, and
RMSE. Bold indicatesthe best value and underline indicates the second-best.

»  Cooling Analysis: Benchmarked V1 and V2 performance in capturing park and
spillover cooling. V2 outperformed V1, reducing MAE from 0.302 °C to 0.199 °C

> Extrapolation Test: Compared V1 and V2 across baseline, random, and high-heat
setups. V2 performed best, accurately extrapolating 3.6 °C beyond training data

Potential Methodological Improvements

»  Evaluate the use of T2M instead of LST for improved UHI
prediction and comparability with meteorological observations

» Align ERA5 and EURO-CORDEX datasets to reduce uncertainty
from temporal and spectral mismatches

» Integrate additional geospatial variables (albedo, soil
moisture, elevation) to enhance predictive accuracy

Key Findings and Next Steps

> Strong generalization to unseen data with stable performance
under extrapolation conditions
» Plausible responses to simulated land use changes, such as

vegetation increase

> Practical tool for predicting and simulating urban heat island
Intensity across diverse urban settings

» Potential to support urban heat mitigation strategies (e.g.,
greening, cooling interventions)
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