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Abstract

As urbanization and climate change progress, urban heat island effects are be-
coming more frequent and severe. To formulate effective mitigation plans, cities
require detailed air temperature data, yet conventional machine learning models
with limited data often produce inaccurate predictions, particularly in underserved
areas. Geospatial foundation models trained on global unstructured data offer a
promising alternative by demonstrating strong generalization and requiring only
minimal fine-tuning. In this study, an empirical ground truth of urban heat patterns
is established by quantifying cooling effects from green spaces and benchmarking
them against model predictions to evaluate the model’s accuracy. The foundation
model is subsequently fine-tuned to predict land surface temperatures under future
climate scenarios, and its practical value is demonstrated through a simulated
in-painting that highlights its role for mitigation support. The results indicate that
foundation models offer a powerful way for evaluating urban heat island mitigation
strategies in data-scarce regions to support more climate-resilient cities.

1 Introduction

As cities grow, increasing building and population densities drive land use changes that impact the
local energy balance and shape the microclimate conditions of urban areas [1]]. With over 70% of the
global population projected to live in cities by 2050, the urban heat island (UHI) effect has become a
major concern [2,[3]. Factors such as heat-retaining materials, vegetation loss and dense structures
can cause cities to be over 5 °C warmer than their surrounding areas [4]. These temperature increases
lead to greater energy consumption, more heat-related health issues, and declining air quality [} 6].
One major challenge in addressing UHI impacts is the lack of high-resolution, timely air temperature
data, which is essential for early warnings and effective heat risk mitigation plans [7, [8]]. Current
forecasting approaches often require large amounts of input data, specialized expertise, and significant
computational resources, making real-time forecasting at fine scales largely inaccessible [9, [10].
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Data limitations from sparse stations and satellite revisit intervals further constrain accuracy [11,[12].
While artificial intelligence (Al)-based models offer increased flexibility, they are often limited by
their dependence on large labeled datasets and poor generalization across domains [13].

In response to these limitations, recent developments in geospatial foundation models (GFMs), show
strong generalization across spatial resolutions and regions with minimal fine-tuning, making them a
promising alternative for urban climate analysis [14]]. Building on this potential, this study explores
the use of a fine-tuned GFM by establishing an empirical ground truth of how urban green spaces
affect temperature through internal and spillover cooling in UHI areas [15,[16]. The model is validated
against these cooling effects to assess its ability to replicate observed processes. It is then used to
forecast urban temperatures under future climate scenarios and to simulate targeted in-painting as
a strategy to mitigate UHI impacts. The result is a unified workflow that integrates data analysis,
forecasting, and simulation to inform climate-resilient urban planning.

2 Methodology

GFMs have demonstrated strong performance in geospatial tasks, with promising generalization
across space and time, making them suitable for UHI applications in the context of increasing
urbanization and climate-induced temperature extremes [17]. However, existing studies rarely
conduct in-depth evaluations of physical realism for GFMs, such as examining how urban green
spaces influence modelled UHI dynamics through simulations like inpainting or future-scenario
forecasting, which are essential for informed urban heat mitigation and planning [18]]. To address this
gap, this study follows a three-phase experimental workflow.

First, an empirical baseline of how green spaces influence temperature is established by overlaying
land-use/land-cover (LULC) maps with high-resolution land surface temperature (LST) imagery to
extract park areas and analyse how urban temperature gradients evolve with distance from these
green spaces, thereby quantifying internal cooling within parks and spillover cooling into surrounding
built-up areas, with all results aggregated over summer daytime data from 2017 to 2025 across all
cities, and assessing how well the GFM is able to replicate these effects for mitigation planning.
Second, the model’s extrapolation ability under future climate conditions is assessed through a
focused experiment in Brasov, Romania, a city intentionally selected because it was not part of the
original training set. Although GFMs are designed to generalize across regions, isolating a single
unseen city allows for a clearer evaluation of performance and highlights the feasibility of future
climate projections. In this setting, the data are ordered by temperature and the model is fine-tuned
only on the cooler 90% of observations, while the hottest 10% are withheld to test generalization to
extreme heat in Brasov. The difference between predicted and observed values in this upper percentile
serves as an estimate of how far the model can reliably extrapolate beyond its training range. Under
the assumption that this 10% threshold represents its extrapolation limit, the model is then used
to project future UHI conditions by replacing ERAS with EURO-CORDEX climate inputs under
different future Representative Concentration Pathway (RCP) scenarios.

Third, a hypothetical urban greening intervention is simulated by guided inpainting of the satellite
image, replacing built-up pixels with those representing urban green areas. The input spectral indices
are therefore adjusted accordingly, and the model is run to predict the resulting thermal impact to
support simulated UHI mitigation planning.

2.1 Training procedure and geospatial foundation model

Building on the work of Bhamjee et al. [19]], the Granite-Geospatial-Land-Surface-Temperature
(Granite-GFM) model [20] is used as a GFM for predicting LST at high spatial and temporal
resolution. The model is evaluated in two configurations, V1 which is fine-tuned using Harmonised
Landsat Sentinel-2 (HLS L30 [21]) imagery and ERAS5-Land [22] 2 m air temperature statistics from
2013-2023 across 28 cities, and V2 which is fine-tuned on an extended dataset covering 52 cities
across a wider range of hydro-climatic zones. Granite-GFM incorporates a Shifted Window (SWIN)
Transformer architecture and builds on the Prithvi-SWIN-L Earth Observation foundation model
[23} 124} [177]. While state of the art approaches for LST prediction focus on single regions of interest,
the Granite-GFM model enables the estimation of LST at a 30m spatial and hourly temporal scale,
for any city of interest using fewer input samples.



2.2 Study regions and data

Our analysis covers thirteen European cities that were not part of the training data, selected to test
the model’s out-of-sample generalization across diverse urban environments. A regional map of
the selected cities is provided in Appendix [5] Twelve of these cities, marked in red, are used in
the first workflow step to assess internal and spillover cooling effects across varying hydro-climatic
settings. For the second step, Brasov (marked in blue) is used as an unseen evaluation city. In the
third intervention step, Prague is selected for in-painting. While these cities are highlighted, the
workflow can in principle be applied to any urban area, which reflects the core advantage of geospatial
foundation models. The methodology is based on four primary data sources. (1) Harmonised Landsat
Sentinel-2 imagery providing 30 m multispectral bands to derive LST using a split-window algorithm
[21,125], (2) Impact Observatory 10 m LULC data for identifying urban and green spaces [26]], (3)
ERAS5-Land reanalysis providing continuous atmospheric context, with near-surface air temperature
stacked onto the HLS imagery [22], (4) EURO-CORDEX regional climate projections providing
future forcing under multiple RCPs to represent different greenhouse-gas emission trajectories [27]].

3 Experiments and results

This section presents the experimental evaluation of our three-phase workflow with Model V1 and
Model V2. The model’s predictive fidelity is assessed through the cooling anomaly (AT'), defined as
the temperature difference between a point of interest and the surrounding built-up baseline. This
isolates cooling effects from background variation and measures how well the model captures green
space cooling. The difference between ground truth and predicted anomalies is quantified using Mean
Absolute Error (MAE), Root Mean Square Error (RMSE), and Mean Bias Error (MBE). Forecasting
performance is separately evaluated based on the model’s ability to extrapolate to extreme conditions,
using MAE, Mean Square Error (MSE), and RMSE for the LST of the hottest 10% of unseen data.

3.1 Ground truth internal and spillover cooling patterns

The ground truth analysis reveals clear thermal patterns shaped by urban green spaces. At the
macro-scale, the urban gradient shows an average UHI of 4+-3.3°C in dense cores, driven by the lack
of vegetation, as can be seen in Figure [Ta] The heat source-sink analysis reinforces this link, with all
tree cover located in the city’s coolest areas, as shown in Figure[Tb] At the micro-scale, parks exhibit
strong internal cooling, with temperatures dropping up to —2.6°C within 200 meters of the edge.
Beyond their boundaries, spillover cooling lowers nearby temperatures by as much as —3.5°C close
to parks, decreasing to about —1°C at 150 meters distance.

(a) Urban gradient experiment (b) Heat source-sink experiment

Figure 1: Baseline UHI characterization for Prague based on gradient and source—sink experiments.

3.2 Model performance evaluation and future climate forecasting

Although both models achieve high accuracy in replicating the internal cooling gradient, model V2
exhibits a substantial improvement in representing the more complex spillover cooling phenomenon.
Specifically, the MAE decreases from 0.302°C in V1 to 0.199°C in V2. As shown in Figure[2]and
summarized in Table[T]in the Appendix, this demonstrates a statistically significant enhancement in
performance attributable to the more diverse training of model V2.

Furthermore, the model shows strong extrapolation performance, achieving an MAE of 1.74 °C on
the upper 10% of unseen temperature data using model V2. This improved accuracy, particularly
in extrapolating to extreme conditions, provides strong confidence in its predictive capabilities



(a) Internal cooling gradient (b) Spillover cooling gradient

Figure 2: Comparison of ground truth cooling phenomena with model predictions.

for forecasting and simulation tasks. The climate projections in Figure [3] indicate a substantial
intensification of urban heat islands under RCP 4.5 and 8.5 and show the development of UHI in
Brasov for 2030, 2050, and 2100 under RCP 2.6, 4.5, and 8.5, based on EURO-CORDEX data.
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Figure 3: Projected UHI extent under RCP 2.6, 4.5, and 8.5 for 2030, 2050, and 2100 in Brasov.

3.3 Urban greening simulation through inpainting

After establishing the model’s capacity to replicate real-world cooling effects and forecast scenarios
with high accuracy, the effectiveness of Model V2 is demonstrated through an urban greening
scenario. The simulation provides a “before and after” comparison of the intervention area across
RGB-, normalized difference vegetation index (NDVI)-, and LST imagery, as can be seen in Figure ]
together with a transect showing the LST profile through the intervention area, confirming the land
cover change and its cooling effect. Building on this, the simulation further quantifies the internal
cooling within the new park and the spillover into the surrounding neighborhood, as shown in Figure
[6]in the Appendix, demonstrating the model’s ability to provide evidence-based metrics for urban
planning decisions.

Figure 4: Comparison of inpainting results against ground truth data in Prague.

4 Conclusion

This paper demonstrates a comprehensive workflow using a fine-tuned GFM to analyze, forecast, and
simulate mitigation strategies for UHI. We have shown that by first establishing an empirical ground
truth, we can effectively validate a GFM’s ability to replicate complex thermal phenomena. The
validated model can then be applied to forecast future climate scenarios and to perform in-painting
for assessing the impact of potential interventions. This approach transforms the GFM from an
assessment tool into an interactive simulation platform for building climate-resilient cities.
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A Appendix

A.1 Overview of selected study regions

For the experiments, twelve European cities were selected as study regions. For each city, Harmonized
Landsat Sentinel-2 (HLS) imagery, ERAS5-Land atmospheric reanalysis data, ESRI land use/land
cover classifications, and EURO-CORDEX climate scenario data were downloaded and processed,
covering the historical period from 2017 to 2025 and future projections for 2030, 2050, and 2100.
Together, these datasets ensure consistent coverage, high resolution, and comparability across cities,
supporting both ground-truth analysis and predictive modeling.

Latitude

Longitude

Figure 5: Map of the twelve European study cities (red dots), selected for their diverse urban
characteristics, hydro-climatic settings, and suitability within the HLS tiling system, which were
further analyzed for their internal and spillover cooling effects. Brasov (blue dot) was chosen as an
extrapolation site to test model generalization.

A.2 Evaluation of urban green area cooling effects using a geospatial foundation model

The predictive framework’s ability to capture urban cooling effects was assessed by benchmarking
the two model variants, V1 and V2, based on their performance in representing internal cooling
gradients within parks and the spillover of cooling into surrounding urban areas. Model accuracy was
assessed using MAE, RMSE, and MBE, enabling direct comparison of predictive performance across
both experiments.



Table 1: Performance comparison of model variants for the two key cooling experiments. The best
value per metric between V1 and V2 is underlined.

Vi V2
Experiment MAE RMSE MBE MAE RMSE MBE

Internal Cooling  0.240 0.257 +0.240 0.231 0.249 +0.231
Spillover Cooling  0.302  0.339  +0.302 0.199 0.243  +0.199

A.3 Analysis of cooling gradients for urban green areas using a geospatial foundation model

The thermal impact of the simulated greening intervention was assessed using Model V2 by analyzing
both internal and external cooling responses. The internal cooling gradient captures the temperature
decrease from the park edge toward its center, while the spillover gradient reflects how far this
effect extends into surrounding built-up areas. Together, these analyses demonstrate both local and
neighborhood-scale cooling benefits.
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Figure 6: Cooling phenomena of the proposed intervention area.

A.4 Comparison of model variants for extrapolation capability

Table 2] presents the test set results for Model V1 and Model V2, both fine-tuned on Brasov-specific
data using identical hyperparameters. Three evaluation setups were applied. The Baseline reflects
zero-shot performance without Brasov-specific fine-tuning. The Random Data Split follows a
conventional 72/18/10 train/validation/test split. The High Heat Scenario implements an extrapolation
experiment by restricting training and validation to the lower 90% of temperature observations and
reserving the upper 10% for testing, thereby assessing how well the models predict land surface
temperatures beyond their training range.

Table 2: Performance comparison of model variants using MAE, MSE, and RMSE. Bold indicates
the best value and underline indicates the second-best.

Vi1 V2
Model Variants MAE MSE RMSE MAE MSE RMSE
Baseline 195 7.25 2.69 281 1294 3.60
Random Data Split 1.80  6.26 2.50 1.77  5.80 241

High-Heat Scenario (90th) 1.96  7.05 2.66 1.74  6.37 2.52

The results indicate that the High Heat Scenario models perform comparably to the random split
across all metrics, while consistently exceeding the Baseline, except for MAE in V1. Notably, V2
achieves lower MAE in the High Heat Scenario than in the random split, demonstrating a stronger
capacity for generalization. Across all settings and model variants, differences remain below 0.60 °C,
showing that GFMs can extrapolate beyond training data and capture high-heat extremes relevant for
UHI dynamics.



For Brasov, the 90th percentile temperature was 23.29 °C, with the GFM extrapolating up to 26.91 °C
and reaching an MAE of 1.74 °C. This represents a successful prediction of 3.62 °C beyond the
training limit, which provides an estimate of the model’s extrapolation limit, forming the basis for
projecting future UHI intensity under EURO-CORDEX climate scenarios.
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